Polyurethane Rigid Foam Containing Lignin

Title: COMPOSITIONS OF PHENOLIC BIOPOLYMERS

 Number/Link:WO2015/055662

Applicant/Assignee: Solvay

Publication date: 23-04-2015

Gist”: Lignin is emulsified in a halogenated polyol and then used to prepare rigid foams.

Why it is interesting: This case is about yet another attempt to incorporate lignin into polyurethane materials. In this invention lignin is dispersed in a halogenated polyol using a suitable milling process. The polyol is preferably a brominated ‘rigid’ polyether.  The dispersed lignin (pref.) has a (d90) mean particle size of less than 100μm and is used in an amount of up to about 50% on the brominated polyether.  The lignin dispersion can then be used together with other polyols in rigid foam formulations.  The resulting foams should have improved flammability properties and the lignin is said to have no negative effect on thermal insulation properties.

Part of a typical lignin structure

Part of a typical lignin structure

 

Classic PU Patent of the Month: Bayer on Viscoelastic Flexible Foams (1988)

Title: Process for the preparation of cold-hardening flexible polyurethane foams having excellent deadening properties.

 Number/Link: EP0331941

Applicant/Assignee: Bayer

Publication date: 13-09-1989

Gist”: Highly damping flexible foams are made using a mixture of three specific polyols.

Why it is interesting: “Visco” or “memory” foams are currently known especially for their use in matresses and pillows.  Originally however these “dead” foams were developed as vibration damping materials for acoustic applications. The invention is based on the use of three specific polyols: (a) a ‘normal’ PO/EO-tipped triol with a hydroxyl value of about 28, (b) a ‘rigid’ all-PO triol with OHv of about 350 and (c) a ‘high EO’ triol with an EO content of about 75% and OHv of 36. The polyols are used in a ratio of about 25:15:60 (a:b:c) together with either TDI or MDI. Because the polyols are relatively immiscible the resulting foams have a soft-phase glass transition which is ‘smeared’ out over a temperature range controlled by polyol (a) at the low end and by (c) at the high end – ranging e.g. from -30°C to +10°C. This wide glass transition in turn results in a very wide damping frequency range.  A very clever idea that has been copied many times.

Polyurethane "memory foam"

Polyurethane “memory foam”

Steam-Treated Polyisocyanurate: Take Two

Title: PROCESS FOR MAKING URETHANE-ISOCYANURATES

 Number/Link:WO2015/006391

Applicant/Assignee: Dow

Publication date: 15-01-2015

Gist”: Treating PUR-PIR with hot water at superatmospheric pressure results in a Tg increase.

Why it is interesting: This is exactly the same invention as discussed a while ago on this blog: WO2014/160616 . But, apart from the title, the application has been completely re-written by another agent and filed less then 4 months  after the first one. The only difference in the claims appears to be that the temperature and index ranges are taken a bit wider and that filled polyols and polyester polyols are claimed separately.  Very strange.  Is it possible that they forgot they already filed this?

Isocyanurate group

Isocyanurate group

  • Pages

  • Categories

  • Enter your email address to follow this blog and receive notifications of new posts by email.

    Join 259 other subscribers
  • Follow Innovation in PU on Twitter