Fluorinated Thermoplastic Polyurethanes

Patent Title: SHOE UPPERS & CASE FOR PORTABLE DEVICES

 Number/Link: WO2018/007359  WO2018007360

Applicant/Assignee:  Solvay

Publication date:  11 January 2018

Gist”:  F-TPUs are prepared by incorporating perfluoro diols

Why it is interesting: The current inventions are about fluorinated TPU and its applications. The F-TPUs are prepared by replacing part of the polyol with hydroxyl-ended fluorinated polyethers. In the examples fluorinated polyether diols are used in different ratios to conventional polyester-, PTMEG-, CAPA- and polycarbonate diols and reacted with MDI or HDI and BDO or HDO as chain extenders. The F-TPUs can be used as uppers for footwear and as cases for smartphones and are said to have improved stain resistance and – surprisingly- a soft feel to the touch.

case

F-TPU smartphone case

 

Isocyanate-Free Polyaminal-Polyurethane Foams

Patent Title: SYSTEM FOR DIMENSIONALLY STABLE ISOCYANATE-FREE POLYURETHANE FOAM

 Number/Link: WO2018/005142

Applicant/Assignee:  Dow

Publication date: 4 January 2018

Gist”: Polyaldehydes are reacted with polycarbamates in the presence of an acid catalyst, a metal oxide powder and a blowing agent.

Why it is interesting: According to this invention hydrolytically-stable foams can be prepared from a low molecular weight difunctional aldehyde and a polycarbamate with a functionality of about 3.5 to 4 and an equivalent weight of about 200 to 300, in the presence of a blowing agent and a protic acid as catalyst. Surprisingly the foams are rendered hydrolytically stable by the incorporation of a metal oxide powder with a specific particle size. In the examples polycarbamates are prepared by capping high functionality polyols with methylcarbamate and are then reacted with 1,4-cyclohexanedicarboxaldehyde together with p-toluensulfonic acid as catalyst, HFC245fa as blowing agent and MgO powder. The foams show densities of 130-170 kg/m³ and are said to be useful as sealants.

CHDA

Cyclohexanedicarbaldehyde

Free Download: Polyurethane Science Scan Nr. 9 – December 2017

You can now download the 9th issue (December) of my monthly PU Science Scan for FREE from my webshop at http://sellfy.com/GeertBleys.

coverpage9

 

Polyamide Polymer Polyols

Patent Title: POLYAMIDE DISPERSION IN POLYOL AND PREPARATION THEREOF

 Number/Link: WO2017/216209

Applicant/Assignee:  BASF

Publication date: 21 December 2017

Gist”: Polyamide particles from polyether diamine and adipic acid are dispersed in polyol

Why it is interesting: Conventional polymer polyols contain either SAN-, polyurethane- or polyurea particles (see e.g. here).  According to this invention, polymer polyol dispersions can also be prepared by reacting a diamine, containing at least 50 wt% of a linear polyether having two terminal primary amine groups with a dicarboxylic acid (e.g. adipic acid) in a polyether polyol.  The reaction results in a dispersion of polyamide particles in the polyether polyol, stabilized by the polyether diamine. The polymer polyols are useful for flexible foam production and are said to show an improved hydrolysis resistance.

adipicacid

Adipic acid

Coated Fracking Proppants

Patent Title: AMIDE BASED COATING

 Number/Link: WO2017/213855

Applicant/Assignee:  Dow

Publication date: 14 December 2017

Gist”: Proppant particles are coated with polyamide based on isocyanate and carboxylic acids

Why it is interesting: Proppant particles are used in the hydraulic fracturing process to force open rock fissures to extract gas and oil – as discussed before in this blog. According to this invention the proppant particles are coated with a reacting mixture of a polyisocyanate (e.g. polymeric MDI) and polycarboxilic acids (e.g. a blend of citric acid and an acid-terminated polyether triol). Under the high pressure and temperature of the fracture, the coating will bond the proppant particles together, thus preventing flow-back of the proppant and the blocking of the well. The coating can contain additives to capture heavy metals like radium and sulfides like hydrogensulfide to reduce contamination of the fracture fluid.

citricacid

Citric acid