Breathable TPU Membranes

Patent Title: POROUS THERMOPLASTIC MEMBRANES

 Number/Link: WO2017/178482

Applicant/Assignee:  BASF

Publication date: 19-october-2017

Gist”: Semi-permeable membranes are made by phase inversion of all-hardblock TPU solutions

Why it is interesting: ‘Breathable” membranes show a high resistance to liquid water permeation (LEP) combined with a high water vapour permeability (WDD). According to this invention breathable polyurethane membranes can be prepared by dissolving an all-hardblock thermoplastic polyurethane in a polar, aprotic solvent (like N-methyl pyrrolidone) together with a water soluble compound, casting a film and coagulating the film with water. In the examples diisocyanates (MDI, TDI and HDI) are stoichiometrically reacted with chain extenders (MEG, BDO and HDO).  The resulting materials were schredded and dissolved in NMP together with some glycerol. 150 μm thick films were cast on glass and coagulated in water, resulting in membranes with an average pore size ranging between 4 and 500 nm.  The membranes are said to be useful to make breathable fabrics for outdoor wear e.g. (“Gore Tex” (TM) – type materials)

N-methyl-2-pyrrolidone

 

 

 

 

Natural Oil Polyols using Self-Metathesis

Patent Title: POLYOLS FORMED FROM SELF-METATHESIZED NATURAL OILS AND THEIR USE IN MAKING POLYURETHANE FOAMS

 Number/Link: US2017/0291983

Applicant/Assignee:  Trent Univ.

Publication date: 12 october 2017

Gist”: NOPs from self-metathesized soy oils

Why it is interesting: The use of metathesis chemistry to modify natural oils before converting them to polyols has been discussed before in this blog:  see e.g. US2015/0337073, to the same applicant, which relates to cross-metathesis of natural oils using (e.g.) 1-butene. The current case is about self-metathesis of unsaturated natural oils, resulting in ‘metathesis oligomers’ which are then (partially) epoxidated and hydroxylated to prepare the polyols. In the examples soybean oil is turned into polyols with OH values between about 100 and 250, which are used to make flexible foams with densities of more than 150 kg/m³.

Oligomer from self-metathesis of unsaturated triglycerid


Monodisperse Polymer Polyol

Patent Title: PROCESS MAKING POLYMER POLYOL HAVING MONODISPERSE DISPERSED POLYMER PARTICLES

 Number/Link: WO2017/172417

Applicant/Assignee:  Dow

Publication date: 5 october 2017

Gist”: Polymer polyol with a “monodisperse” particle size distribution is prepared by using a specific seeding dispersion

Why it is interesting: It is well known that the use of polymer polyols in flexible polyurethane foam formulations can result in improved airflow and load bearing properties. For optimal results the average particle size of the dispersed polymer needs to be similar to the cell wall thickness. According to this invention a SAN polymer polyol with a controlled and narrow particle size distribution can be prepared by using a seed dispersion which consists of an unsaturated macromer which, together with SAN particles of a particle size between 50 and 500 nm, is dispersed in a base polyol. The macromer is a PO/EO polyether with a (pref.) mole weight of 11000 to 14000 Da and having 4-5 OH groups and 1-2 reactive double bonds. The polymer polyol is prepared by dispersing the seed dispersion in the base polyol together with styrene, acrylonitrile and a solvent (e.g. isopropanol). After polymerization of the monomers the solvent is removed, resulting in a polymer polyol with at least 30% solids, average particle size of 1-3 μm and a size span of 1.25. In the examples the macromer is prepared by capping 1-2 OH groups of a 6-functional 90/10 PO/EO polyol with 3,3-isoprenyl-α,α-dimethylbenzylisocyanate.

3,3-isoprenyl-α,α-dimethylbenzylisocyanate

 

 

Free Download: Polyurethane Science Scan Nr. 6 – September 2017

You can now download the 5th issue of my monthly PU Science Scan for FREE from my webshop at http://sellfy.com/GeertBleys.

 

cover6

Polythiourethanes for 3D Printing

Patent Title:  THIOURETHANE POLYMERS, METHOD OF SYNTHESIS THEREOF AND USE IN ADDITIVE MANUFACTURING TECHNOLOGIES

 Number/Link: WO2017/0267804

Applicant/Assignee:  Univ. Texas

Publication date: 21-September-2017

Gist”: Photolatent bases are used to catalyse the polythiol-polyisocyanate reaction

Why it is interesting: According to this invention reactive systems useful for additive manufacturing processes can be prepared from polythiols, diisocyanates and a photolatent base.  When irradiated the photolatent base will split off a non-nucleophilic base which will catalyse the thiol-isocyanate reaction. The systems can be prepared such that the resulting materials show improved mechanical properties over current 3D printed materials.  In an example 2,2′-(ethylenedioxy)diethanethiol and pentaerithritol tetrakis(3-mercaptopropionate) are reacted with HDI using 1,1-dimethyl-1-(2-hydroxypropyl)amine-p-nitrobenzimide (DANBA) as a photolatent base.

Example of pholatent base (DANBA)