Aliphatic TPU with Reduced Effloresence

Patent Title: ALIPHATIC THERMOPLASTIC POLYURETHANES, PRODUCTION AND USE THEREOF

 Number/Link:   WO2018/192936 (German)

Applicant/Assignee:  Covestro

Publication date: 25 October 2018

Gist”: TPU based on 1,10-decanediisocyanate shows reduced blooming

Why it is interesting: Aliphatic thermoplastic polyurethanes, based on hexanediisocyanate (HDI) can show “blooming” i.e. the formation of a white precipitate on the surface of the material.  It is believed that this is caused by the formation of cyclic oligourethanes migrating to- and forming crystals on the surface. According to this invention, this blooming behaviour can be prevented by using long-chain aliphatic diisocyanates like 1,10-diisocyanatodecane or 1,12-diisocyanatododecane instead of HDI.

DDI

1,10-diisocyanatohexane (DDI)

 

TPU Nanocomposite

Patent Title: POLYURETHANE COMPOSITE

 Number/Link: WO2018/185650 (Spanish)

Applicant/Assignee: UNIVERSIDAD DE ANTIOQUIA

Publication date: 11 October 2018

Gist”: Protein-stabilized nano- calciumcarbonate particles are incorporated into a thermoplastic polyurethane composition

Why it is interesting: Calciumcarbonate nanoparticles are prepared by mixing a solution of sodium carbonate, sodium caseinate and calciumchloride in a high pressure homogenizer. Particles are formed of CaCO3 embedded in a protein matrix that stabilizes that particles against aggregation. Particle size is (pref) 150-300nm with primary CaCO3 particles of 5-10nm. The particles are used in an amount of (pref) 0.6-1% (w/w) on a TPU composition. The TPUs are said to show increased mechanical properties and improved cell growth and are said to be useful for biomedical applications.

nanoparticle

Stabilized nanoparticles (Wikipedia)

Reactive TPU for AM

Patent Title: REACTIVE THERMOPLASTIC POLYURETHANE BASED ON BLOCKED ISOCYANATES

 Number/Link: WO2018/149977

Applicant/Assignee:  BASF

Publication date: 23 August 2018

Gist”: Low molecular weight TPU with blocked isocyanate groups is useful for 3D printing

Why it is interesting: The invention is related to relatively low MW ( up to 40,000Da) thermoplastic polyurethanes with thermolabile end groups and a melting point of about 100ºC (pref).  The TPU has a low melt viscosity and after de-blocking (at pref. about 150ºC) the isocyanate groups can react with chain extender present, resulting in increased MW and related properties. The TPU can be prepared by partially blocking diisocyanates (with e.g. caprolactam) and then reacting in one shot or prepolymer system with polyols and chain extenders. In powder form the TPUs are said to be useful in additive manufacturing (AM) processes.

caprolactam

Caprolactam

TPUs from Block Polyester Polyols

Patent Title: THERMOPLASTIC POLYURETHANE HAVING HIGH TEAR PROPAGATION STRENGTH  & PROCESS FOR PRODUCING TRANSPARENT HARD THERMOPLASTIC POLYURETHANES

 Number/Link: WO2018/115460  WO2018/115468

Applicant/Assignee:  BASF

Publication date: 28 June 2018

Gist”:  Polyester polyols containing a “hard block” of polyethyleneterephthalate are used in the preparation of TPU 

Why it is interesting: According to this invention thermoplastic polyurethanes with a high hardness at a relatively low hardblock level (<75%), or a high tear strength at relatively low Tg (<5°C) can be prepared from a polyester polyol that is a block copolymer containing 10-50% of an aromatic polyester block, the rest being aliphatic polyester. In the examples diols are prepared from PET together with adipic acid and BDO or DEG. The diols are reacted with MDI or HDI and a chain extender like BDO or HDO.

PET

Poly(ethyeleneterephthalate)

Fiber Reinforced TPU Composites

Patent Title: THERMOPLASTIC POLYURETHANE MATRIX RESIN

 Number/Link: WO 2018/104145

Applicant/Assignee:  Henkel

Publication date: 14 June 2018

Gist”: TPU based on a vicinal alkane diol together with an alkoxylated aromatic diol can be used as matrix material in a fiber composite

Why it is interesting: According to this invention a thermoplastic polyurethane with a high Tg (pref. >80°C) and a high stiffness (>1GPa) can be prepared from a short chain, sterically hindered, vicinal diol (e.g. 1,2-propanediol or 2,3-butanediol), an alkoxylated aromatic diol (e.g. alkoxylated bisphenol A or F) and an aromatic diisocyanate (e.g. 4,4’MDI) pref. mixed with some high functionality isocyanate (e.g. polymeric MDI) to control branching an molecular weight. The TPU composition can be used to make a fiber reinforced composite in an RTM-type process. The cured thermoplastic matrix has high mechanical properties but still allows for post-cure modification of the moulded part.

EtoxBisF

Ethoxylated Bisphenol F