Phosgene-Free Polyisocyanate with PDMS Backbone

Patent Title: MULTI-FUNCTIONAL CARBAMATE HAVING SOFT-SEGMENTS, POLYISOCYANATE OBTAINED VIA SUBSEQUENT NON-PHOSGENE SYNTHESIS METHODS, URETHANE PREPOLYMER AND ELASTOMERIC URETHANE HAVING SOFT-SEGMENTS DERIVED THEREFROM, AND PREPARATION METHOD THEREOF

 Number/Link: US20180186918

Applicant/Assignee:  Great Eastern Resins Industrial

Publication date: 5 July 2018

Gist”: Biscarbamate with PDMS softblock backbone is heat-cracked into diisocyanates

Why it is interesting: The invention relates to isocyanate-capped “softblock” siloxanyl prepared without using phosgene and polyurethanes derived therefrom. The invention is accomplished by reacting relatively high MW polydimethylsiloxanediamines with diphenylcarbonate.  The resulting biscarbamate is heated under reduced pressure to produce the diisocyanate and to remove the phenol by-product.  The isocyanates can be reacted with polyols and/or chain extenders to produce highly hydrophobic polyurethanes with low surface tension and good chemical resistance.

biscarbamate

Biscarbamate with PDMS backbone

 

Catalyst System for Frothed Foams

Patent Title: METHOD FOR DELAYING CURING IN POLYURETHANE AND COMPOSITIONS AND ARTICLES MADE THEREFROM

 Number/Link: WO2018/075302

Applicant/Assignee:  Rogers

Publication date: 26-April-2018

Gist”: A mixture of  a metal acetylacetonate and a catalytic inhibitor prevents premature curing

Why it is interesting:  A catalyst system that prevents premature curing of frothed (PORON® – type) foams consists of  ferric acetylacetonate catalyst and a β-diketone inhibitor e.g. acetylacetone or dibenzoyl methane. The catalyst combination allows for handling of the raw materials at 55°C for 5 minutes without reacting.  Frothed foams tend to have improved properties, like compression set as compared to conventional foams.

Tris(acetylacetonato)iron(III)

Tris(acetylacetonato)iron(III)  (Wikipedia)

Hybrid Polyurethane Elastomer

Patent Title:  PROCESS FOR PRODUCING ELASTOMERS

 Number/Link: WO2018069348 (German)

Applicant/Assignee:  Covestro

Publication date: 19 April 2018

Gist”: Unsaturated polycarbonate polyols are reacted with isocyanates together with a peroxide

Why it is interesting: Unsaturated polyethercarbonate polyols are prepared by reacting alkyleneoxides (e.g. PO) together with carbondioxide and an unsaturated monomer like a glycidylether or -ester or cyclooctadienemonoepoxide. These polyols can then be reacted with isocyanates in the presence of  a free-radical initiator like an peroxide. The resulting material can then be crosslinked in a separate step. The hybrid elastomers are said to have improved tensile properties at same or similar hardness.
A related application is WO2018/069350.

glycidylmethacrylate

Glycidylmethacrylate

Polyurethanes from Alpha Glucan

Patent Title: POLYURETHANE POLYMERS COMPRISING POLYSACCHARIDES

 Number/Link: WO2018/017789

Applicant/Assignee:  Du Pont

Publication date: 25 january 2018

Gist”: Polyurethanes containing poly alpha 1,3-glucan

Why it is interesting: The invention is related to the preparation of different types of polyurethanes comprising poly alpha 1,3-glucan, which is a polymeric D-glucose having alpha 1,3 glycosidic bonds (as opposed to most natural glucose polymers which show α or β 1,4 glycoside linkages). Alpha 1,3 glucan can be prepared by enzymatic polymerization using sucrose and a glycosyltransferase. The glucan can be mixed with polyols and reacted with isocyanates to prepare polyurethanes.  Many examples are given ranging from PUDs, films, flexible foams to TPUs.

glucan

Poly alpha 1,3-glucan

 

Degradable Polyurethane Elastomers

Patent Title: DEGRADABLE EXTRUSION RESISTANT COMPOSITIONS AND ARTICLES OF MANUFACTURE

 Number/Link: WO2018/013288

Applicant/Assignee:  Baker Hughes Inc.

Publication date: 18 January 2018

Gist”: Polyester-PU elastomers are compression moulded together with fine particles of acid or base

Why it is interesting: The invention is about moulded polyurethane parts for use as temporary components in boreholes and which can be controllably degraded. The degradability is achieved by compression moulding polyester PU elastomers together with an acidic or basic fine powder.  In an example a polyester-TDI ‘full’ prepolymer is reacted with 1,3-propanediol-bis-(4-aminobezoate) and compression moulded with a sulfamic acid powder. The moulded parts could be degraded within 2 weeks in water of 50-90°C.

vibracure

1,3-propanediol bis-(4-aminobenzoate)