Catalyst System for Frothed Foams

Patent Title: METHOD FOR DELAYING CURING IN POLYURETHANE AND COMPOSITIONS AND ARTICLES MADE THEREFROM

 Number/Link: WO2018/075302

Applicant/Assignee:  Rogers

Publication date: 26-April-2018

Gist”: A mixture of  a metal acetylacetonate and a catalytic inhibitor prevents premature curing

Why it is interesting:  A catalyst system that prevents premature curing of frothed (PORON® – type) foams consists of  ferric acetylacetonate catalyst and a β-diketone inhibitor e.g. acetylacetone or dibenzoyl methane. The catalyst combination allows for handling of the raw materials at 55°C for 5 minutes without reacting.  Frothed foams tend to have improved properties, like compression set as compared to conventional foams.

Tris(acetylacetonato)iron(III)

Tris(acetylacetonato)iron(III)  (Wikipedia)

Aliphatic Polyisocyanurate Composites

Patent Title: METHOD FOR PRODUCING A POLYISOCYANURATE COMPOSITE MATERIAL

 Number/Link: WO 2017/191216  (German)

Applicant/Assignee:  Covestro

Publication date: 9 November 2017

Gist”: Partially trimerized aliphatic diisocyanates are mixed with glass fiber and reacted using a trimerization catalyst

Why it is interesting: Conventional fiber-reinforced composites based on unsaturated polyesters, epoxies, polyurethane and the like are not weather-stable and need to be coated for outdoor use. Weather stable polyisocyanurate composites are known (WO2007/096216 – Huntsman) but are based on aromatic diisocyanates and show high reactivity and short ‘pot life’. According to this invention, PIR composites with improved reaction profile and weatherability can be prepared from partially trimerized aliphatic diisocyanates with a diisocyanate monomer content of less than 20% (w/w). In the examples commercially available HDI and IPDI trimer is used together with short glass fiber and a potassium acetate/PEG 400 blend as catalyst cured at a temperature of 160 to 180°C.

Isophorone diisocyanate (IPDI)

 

Polythiourethanes for 3D Printing

Patent Title:  THIOURETHANE POLYMERS, METHOD OF SYNTHESIS THEREOF AND USE IN ADDITIVE MANUFACTURING TECHNOLOGIES

 Number/Link: WO2017/160810

Applicant/Assignee:  Univ. Texas

Publication date: 21-September-2017

Gist”: Photolatent bases are used to catalyse the polythiol-polyisocyanate reaction

Why it is interesting: According to this invention reactive systems useful for additive manufacturing processes can be prepared from polythiols, diisocyanates and a photolatent base.  When irradiated the photolatent base will split off a non-nucleophilic base which will catalyse the thiol-isocyanate reaction. The systems can be prepared such that the resulting materials show improved mechanical properties over current 3D printed materials.  In an example 2,2′-(ethylenedioxy)diethanethiol and pentaerithritol tetrakis(3-mercaptopropionate) are reacted with HDI using 1,1-dimethyl-1-(2-hydroxypropyl)amine-p-nitrobenzimide (DANBA) as a photolatent base.

Example of pholatent base (DANBA)

Moisture Scavenger for Polyurethane Coatings

Title: PROCESSES FOR MOISTURE SCAVENGING IN PREPARING POLYURETHANE COATINGS AND COMPOSITIONS THEREFOR

Number/Link: US2017/0114247

Applicant/Assignee: Achiewell

Publication Date: 27-april-2017

“Gist”: Methoxysilicon compound with e-withdrawing group together with hydrophobic t-amine catalyst acts as moisture scavenger

Why it is interesting:  Moisture in PU coating compositions can be a problem because it negatively affects both the properties of the composition (pot life and viscosity..) and of the final coating. Moisture scavengers like molecular sieves are well known but often have a negative impact as well. According to this invention, methoxyorganosilicon compounds with at least one electron withdrawing group attached to the silicon atom act as efficient moisture scavengers when used in combination with a hydrophobic tert-methylamine catalyst. Preferred organosilicon compounds have 3 methoxy substituents and one hydrocarbon-based e-withdrawing group, like e.g. fluoroethyltrimethoxysilane. A preferred catalyst is 1,3-bis[3-dimethylaminopropyl]urea (claimed).  No examples are given.

1,3-bis[3-dimethylaminopropyl]urea

Infrared Curable 2K PU Adhesives

Patent Title: LATENT TWO-PART POLYURETHANE ADHESIVES CURABLE WITH INFRARED RADIATION

 Number/Link: WO2016/205251 and related cases: WO..5252, WO…5254 and WO..5255

Applicant/Assignee: Dow

Publication date: all published on 22 dec 2016

Gist”: Two-component PU adhesive using 3 different delayed-action catalysts

Why it is interesting: Two component adhesive systems need a sufficiently long ‘open time’ preferably combined with a fast cure once activated, e.g. by heat. Heat curing using infrared radiation allows for ‘spot curing’ , i.e. curing only predetermined parts of the adhesive such that the assembly can be handled and can be cured completely in a subsequent step.  This process is fast and saves energy.  The current invention is about IR curable adhesives containing 3 different types of latent catalysts: a latent room temperature organometallic catalyst based on Sn, Zn or Bi added to the polyol component, a phenol-blocked cyclic amidine and a carboxylic acid blocked cyclic amidine.  The two latter catalysts can either be included in the polyol or in the isocyanate component. The catalysts used in the examples are dioctyltinthioglycolate, phenol blocked 1,8-diazabicycloundec-7-ene and a carboxilic acid blocked 1,8-diazabicycloundec-7-ene.

1,8-diazabicycloundec-7-ene

1,8-diazabicycloundec-7-ene