Polyols for Polyurethane Fibre-Reinforced Composite

Patent Title: PROCESS FOR PRODUCING FIBER COMPOSITE MATERIAL USING HYBRID POLYOL

Number/Link: WO2018/224592 (German)

Applicant/Assignee: BASF

Publication Date: 13 December 2018

“Gist”: Composite composition based on polyol prepared from initiator mixture comprising castor oil

Why it is interesting: Polyurethane composite production by filament winding, pultrusion and similar processes are known.  These PU systems need a low viscosity, good fibre-wetting properties, long open time and preferably a “snap cure” when activated.  According to this invention, such systems can be prepared from polyols which are made by alkoxylating an initiator mixture consisting of a (pref) 50/50 (w/w) mixture of a fat-based alcohol and an aliphatic trifunctional alcohol, using imidazole catalysis. In an example a castor oil/glycerol mixture is propoxylated to an OH value of  480 mg KOH/g.  Surprisingly this polyol shows a longer open time compared to the corresponding mixture of seperately initiated polyols.

castor oil

Main component of castor oil

Polyurethanes from Alpha Glucan

Patent Title: POLYURETHANE POLYMERS COMPRISING POLYSACCHARIDES

 Number/Link: WO2018/017789

Applicant/Assignee:  Du Pont

Publication date: 25 january 2018

Gist”: Polyurethanes containing poly alpha 1,3-glucan

Why it is interesting: The invention is related to the preparation of different types of polyurethanes comprising poly alpha 1,3-glucan, which is a polymeric D-glucose having alpha 1,3 glycosidic bonds (as opposed to most natural glucose polymers which show α or β 1,4 glycoside linkages). Alpha 1,3 glucan can be prepared by enzymatic polymerization using sucrose and a glycosyltransferase. The glucan can be mixed with polyols and reacted with isocyanates to prepare polyurethanes.  Many examples are given ranging from PUDs, films, flexible foams to TPUs.

glucan

Poly alpha 1,3-glucan