TPUs from Block Polyester Polyols

Patent Title: THERMOPLASTIC POLYURETHANE HAVING HIGH TEAR PROPAGATION STRENGTH  & PROCESS FOR PRODUCING TRANSPARENT HARD THERMOPLASTIC POLYURETHANES

 Number/Link: WO2018/115460  WO2018/115468

Applicant/Assignee:  BASF

Publication date: 28 June 2018

Gist”:  Polyester polyols containing a “hard block” of polyethyleneterephthalate are used in the preparation of TPU 

Why it is interesting: According to this invention thermoplastic polyurethanes with a high hardness at a relatively low hardblock level (<75%), or a high tear strength at relatively low Tg (<5°C) can be prepared from a polyester polyol that is a block copolymer containing 10-50% of an aromatic polyester block, the rest being aliphatic polyester. In the examples diols are prepared from PET together with adipic acid and BDO or DEG. The diols are reacted with MDI or HDI and a chain extender like BDO or HDO.

PET

Poly(ethyeleneterephthalate)

UV Resistant Viscoelastic Foams

Patent Title: POLYURETHANE PRODUCT WITH SULFUR-CONTAINING POLYOL

 Number/Link: WO2018/111806

Applicant/Assignee:  Dow

Publication date: 21 June 2018

Gist”: VE foams using S-containing polyether polyols

Why it is interesting: According to this invention sulfur containing polyols improve the UV resistance of polyurethane materials.  It is believed that sulfur acts as a UV absorber incorporated into the polymer, thereby reducing the need for additives such as antioxidants.  In the examples an S-containing polyether diol is prepared by reacting 2,2′-thiodiethanol with propyleneoxide up to an OH value of  188 mg KOH/g. The diol is then used in an amount of 5 to 15% on the total polyol blend to prepare low resilience flexible foams showing an improved UV resistance.

 

TDE

2,2′-thiodiethanol

 

Hybrid Polyurethane Elastomer

Patent Title:  PROCESS FOR PRODUCING ELASTOMERS

 Number/Link: WO2018069348 (German)

Applicant/Assignee:  Covestro

Publication date: 19 April 2018

Gist”: Unsaturated polycarbonate polyols are reacted with isocyanates together with a peroxide

Why it is interesting: Unsaturated polyethercarbonate polyols are prepared by reacting alkyleneoxides (e.g. PO) together with carbondioxide and an unsaturated monomer like a glycidylether or -ester or cyclooctadienemonoepoxide. These polyols can then be reacted with isocyanates in the presence of  a free-radical initiator like an peroxide. The resulting material can then be crosslinked in a separate step. The hybrid elastomers are said to have improved tensile properties at same or similar hardness.
A related application is WO2018/069350.

glycidylmethacrylate

Glycidylmethacrylate

Oxidation-Proof TPU

Patent Title: POLYURETHANE, METHOD OF PREPARATION, AND ARTICLE COMPRISING THE POLYURETHANE

 Number/Link:  WO2018/057488

Applicant/Assignee:  THE UNIVERSITY OF MASSACHUSETTS

Publication date:  29 March 2018

Gist”:  TPU based on hydrogenated diene diols

Why it is interesting: TPUs based on polyether- or polydiene-diols are prone to oxidative degradation and therefore less useful for e.g. medical applications.  According to this invention, oxidation-stable TPUs can be prepared from hydrogenated polydiene diols with an Mn of 500 to 2000, combined with 5-25% (w/w) polyether diols, chain extender and diisocyanate.  In an example a hydogenated polybutadienediol with Mn of 2000 Da was reacted with 4,4′-MDI together with PTMEG 1000 and BDO in toluene.  At a hardblock content of 35% the TPU showed a Shore hardness of 80A, 250MPa tensile strength and an elongation at break of 520%.

PIB

Hydrogenated (1,2) polybutadiene

 

Polyurethanes from Alpha Glucan

Patent Title: POLYURETHANE POLYMERS COMPRISING POLYSACCHARIDES

 Number/Link: WO2018/017789

Applicant/Assignee:  Du Pont

Publication date: 25 january 2018

Gist”: Polyurethanes containing poly alpha 1,3-glucan

Why it is interesting: The invention is related to the preparation of different types of polyurethanes comprising poly alpha 1,3-glucan, which is a polymeric D-glucose having alpha 1,3 glycosidic bonds (as opposed to most natural glucose polymers which show α or β 1,4 glycoside linkages). Alpha 1,3 glucan can be prepared by enzymatic polymerization using sucrose and a glycosyltransferase. The glucan can be mixed with polyols and reacted with isocyanates to prepare polyurethanes.  Many examples are given ranging from PUDs, films, flexible foams to TPUs.

glucan

Poly alpha 1,3-glucan