Hybrid Polyurethane Elastomer


 Number/Link: WO2018069348 (German)

Applicant/Assignee:  Covestro

Publication date: 19 April 2018

Gist”: Unsaturated polycarbonate polyols are reacted with isocyanates together with a peroxide

Why it is interesting: Unsaturated polyethercarbonate polyols are prepared by reacting alkyleneoxides (e.g. PO) together with carbondioxide and an unsaturated monomer like a glycidylether or -ester or cyclooctadienemonoepoxide. These polyols can then be reacted with isocyanates in the presence of  a free-radical initiator like an peroxide. The resulting material can then be crosslinked in a separate step. The hybrid elastomers are said to have improved tensile properties at same or similar hardness.
A related application is WO2018/069350.




Rigid Thermoplastic Polyurethanes


 Number/Link: WO2017/146948  WO2017/146949

Applicant/Assignee: Eastman Chemical

Publication date: 31 august 2017

Gist”: A “rigid”, high Tg polyester diol is extended with 4,4′ MDI

Why it is interesting: Rigid, high modulus TPUs have been known for a long time – see e.g. Upjohn’s classic patent on ‘Isoplast’ from 1981. These materials are high hardblock TPUs made from diisocyanates, chain extenders with only a small amount of high molecular weight diol as an impact modifier. According to the current invention however, rigid TPUs can be made using less than 40% (w/w) of diisocyanate, a high Tg polyester diol and optionally some chain extender.  The polyester is prepared from ‘rigid’ diols like isosorbide or 1,4-cyclohexanedimethanol together with a ‘rigid’ diacid like terephthalic acid, such that the diol has a MW of more than 400 Dalton and a Tg of more than 40°C. The diisocyanate is pref. 4,4-MDI. The rigid TPUs have a Tg of more than 145°C and a tensile modulus of 1 GPa or higher. They are said to be less moisture sensitive than conventional rigid TPUs.


TPU Shrink Wrap


Number/Link: WO2017/108920

Applicant/Assignee: BASF

Publication Date: 29-jun-2017

“Gist”: Shape memory TPU is used as shrink wrap

Why it is interesting: A thermoplastic polyurethane with a shape-memory is prepared from a diisocyanate, a chain extender and a polyol comprising an ‘aromatic polyester block’, especially a polyethylenetherephthalate block. The composition is chosen such that the TPU has a melting point between 160 and 230ºC and another phase transition between 30 and 80ºC (the “switching temperature”). Films of this material are then stretched at a temperature higher than the switching temperature but below melt temperature and then cooled in stretched state. The stretched films are said to be useful as shrink wrap, especially for foodstuffs. No examples are given.
A surprising application for TPU but hardly a surprising TPU invention i.m.o.

Shrink-wrapped Helicopters (Wikipedia)

TPU from Oleic Acid


Number/Link: US2017/0145145

Applicant/Assignee: Trent University

Publication Date: 25-may-2017

“Gist”: Thermoplastic polyurethane made entirely from C9 monomers derived from oleic acid.

Why it is interesting: Azaleic acid can be prepared by oxidative cleavage of the oleic acid double bond.  Azaleic acid in turn can be converted to 1,9-nonanediol and to 1,7-heptamethyldiisocyanate via azides and Curtius rearrangment (see previous blog post). In this invention a polyester diol is prepared from azaleic acid and nonanediol and is then reacted with 1,7-heptamethylenediisocyanate together with nonanediol as chain extender, resulting in a phase-separated TPU. Best properties are obtained when the nonanediol is first prepolymerized with the diisocyanate. The TPU is said to degrade without cytotoxic degradation products, and is therefore useful for medical applications such as resorbable implants and scaffolds.
Related case: US2017/0145146.

Oleic Acid


Matte, Self-Healing Polyurethane Powder Coatings


Number/Link: WO2017/074835

Applicant/Assignee: Valspar

Publication Date: 4 May 2017

“Gist”: Coating composition comprising isocyanate and two polyester polyols having a similar Tg but a widely different equivalent weight.

Why it is interesting: Conventionally low gloss or “matte” coatings are the result of a microtextured surface achieved by certain fillers or by incompatible polymers and the like. According to this invention “ultra matte” finishes can also -surprisingly- be achieved from a (powder) coating composition comprising a (blocked) isocyanate and a mixture of two polyester polyols. Both polyols have a Tg between 40 and 60ºC prefereably differing not more than 5 to 8ºC, while the OHv of the first polyol is between 150 and 325 and that of the second between 15 and 35.  The ratio between first and second polyol is from about 1:1 to 1:3 w/w. Also surprisingly, the resulting coatings are said to show self-healing properties. An interesting composition but no examples of the polyesters or isocyanates used are given.

Car with matte finish