Natural Oil Polyols using Self-Metathesis

Patent Title: POLYOLS FORMED FROM SELF-METATHESIZED NATURAL OILS AND THEIR USE IN MAKING POLYURETHANE FOAMS

 Number/Link: US2017/0291983

Applicant/Assignee:  Trent Univ.

Publication date: 12 october 2017

Gist”: NOPs from self-metathesized soy oils

Why it is interesting: The use of metathesis chemistry to modify natural oils before converting them to polyols has been discussed before in this blog:  see e.g. US2015/0337073, to the same applicant, which relates to cross-metathesis of natural oils using (e.g.) 1-butene. The current case is about self-metathesis of unsaturated natural oils, resulting in ‘metathesis oligomers’ which are then (partially) epoxidated and hydroxylated to prepare the polyols. In the examples soybean oil is turned into polyols with OH values between about 100 and 250, which are used to make flexible foams with densities of more than 150 kg/m³.

Oligomer from self-metathesis of unsaturated triglycerid


Monodisperse Polymer Polyol

Patent Title: PROCESS MAKING POLYMER POLYOL HAVING MONODISPERSE DISPERSED POLYMER PARTICLES

 Number/Link: WO2017/172417

Applicant/Assignee:  Dow

Publication date: 5 october 2017

Gist”: Polymer polyol with a “monodisperse” particle size distribution is prepared by using a specific seeding dispersion

Why it is interesting: It is well known that the use of polymer polyols in flexible polyurethane foam formulations can result in improved airflow and load bearing properties. For optimal results the average particle size of the dispersed polymer needs to be similar to the cell wall thickness. According to this invention a SAN polymer polyol with a controlled and narrow particle size distribution can be prepared by using a seed dispersion which consists of an unsaturated macromer which, together with SAN particles of a particle size between 50 and 500 nm, is dispersed in a base polyol. The macromer is a PO/EO polyether with a (pref.) mole weight of 11000 to 14000 Da and having 4-5 OH groups and 1-2 reactive double bonds. The polymer polyol is prepared by dispersing the seed dispersion in the base polyol together with styrene, acrylonitrile and a solvent (e.g. isopropanol). After polymerization of the monomers the solvent is removed, resulting in a polymer polyol with at least 30% solids, average particle size of 1-3 μm and a size span of 1.25. In the examples the macromer is prepared by capping 1-2 OH groups of a 6-functional 90/10 PO/EO polyol with 3,3-isoprenyl-α,α-dimethylbenzylisocyanate.

3,3-isoprenyl-α,α-dimethylbenzylisocyanate

 

 

Melt-Dispersed Polymer Polyols

Title: PROCESS FOR MAKING A POLYMER POLYOL

 Number/Link: WO2015/165761  (German)

Applicant/Assignee: BASF

Publication date: 5-11-2015

Gist”: Polymer polyols are prepared by melt-dispersing SAN into a carrier polyol using a specific stabilizer

Why it is interesting: Polymer polyols, or ‘graft polyols’, contain finely dispersed polymeric particles and are especially useful for the production of flexible polyurethane foams.  Usually polymer polyols are produced by in-situ polymerization of styrene-acrylonitrile (SAN)- or polyurea particles in a carrier polyol. In this invention, polymer polyols are prepared by dispersing molten SAN into a carrier polyol using shear mixing and a specific stabilizer.  The stabilizer is a (preferably) comb-shaped polyol-SAN copolymer, and is described in another BASF application: WO2015/165878. The polymer polyols are said to have a fine and uniform particle size distribution, a low viscosity and a high stability against segregation.

SAN

SAN

Syntactic Polyurethane Elastomers

Title: SYNTACTIC POLYURETHANE ELASTOMERS FOR USE IN SUBSEA PIPELINE INSULATION

 Number/Link: WO2015065769 WO2015065770 WO2015065771 WO2015065772

Applicant/Assignee: Dow

Publication date: 7-05-2015

Gist”: Zn/Zr catalyzed syntactic elastomers for subsea pipeline insulation

Why it is interesting: Conventional polyurethane rigid foams cannot be used for the insulation of subsea pipelines because the foams would collapse under the pressure and they are too brittle to be bent.  For these reasons syntactic elastomers can be a better choice for this application. Syntactic polyurethane elastomers consist of a solid PU matrix containing up to 50% (wt/wt) of hollow glass microspheres. The catalyst of choice to produce these materials is phenylmercury neodecanoate.  However because of regulatory pressure other catalyst systems are now being used.  The gist of these four patent applications appears to be the use of a mixture of a zinc carboxylate with a small amount of zirconium carboxylate as a replacement for the organomercury catalyst, but this is not the main claim (probably because of non-patentability). Instead the WO..69 case is about the use of polymer polyols in these systems,  the WO..70 case is about the use of low unsat polyols, WO..71 is about a special type of morphology and WO..72 about the use of prepolymers.

Phenylmercury neodecanoate

Phenylmercury neodecanoate

Six (6) Dow Patents on ‘Conventional’ PIPA Polyols

Title: POLYISOCYANATE POLYADDITION POLYOL MANUFACTURING PROCESS USING STABILIZERS  (and 5 more)

 Number/Link: WO2015038825 WO2015038826 WO2015038827 WO2015038828 WO2015038829 WO2015038830

Applicant/Assignee: Dow

Publication date: 19-03-2015

Gist”: PIPA polyols based on conventional polyols and their applications

Why it is interesting: Polyisocyanate polyaddition or PIPA polyols are a type of polymer polyol consisting of a base polyol and dispersed polyurethane particles. These polyols are prepared by dispersing and reacting in situ an isocyanate and a low molecular weight polyol (e.g. triethanolamine) in a ‘base’ polyol. The reaction is balanced such, that a controlled amount of grafting of the base polyol onto the PU particles results, which stabilizes the dispersion. The need for grafting is the reason why PIPA polyols are always based on EO-tipped (high primary OH) polyols, limiting their use mainly to the production high resilience (HR) foams. The current inventions by Dow devise ways to make PIPA polyols in ‘conventional’ (i.e. low primary OH) polyols either by the use of specific stabilizers (in the WO..25 application) or by pre-reacting part of the iso with the base-polyol before adding the low MW polyol (in the WO..26 application). The WO..27 to WO..29 applications are concerned with the use of these ‘conventional’ PIPA polyols to prepare conventional-, viscoleastic- and combustion modified flexible foams respectively.  W0..30 is concerned with thixotropic PIPA polyols based on urethane-modified isocyanurates.

Flexible foam blocks

Flexible foam blocks