Open Microcellular Rigid Foams

Patent Title: POLYURETHANE FOAM AND PROCESS FOR PRODUCING SAME

 Number/Link: WO 2018/162372 (German)

Applicant/Assignee:  Covestro

Publication date: 13 September 2018

Gist”: Rigid foam formulation is blown with supercritical carbondioxide

Why it is interesting: Open-celled rigid polyurethane foams are well known and used in vacuum insulation panels. Theoretically the best thermal insulation is obtained with the smallest cell size. According to this invention microcellular rigid foams with a homogeneous cell structure, more than 90% open cells and an average cell diameter of less than 50μm can be prepared by using a rigid foam formulation containing a cellopener and supercritical carbondioxide and allowing it to react and expand in a closed mould. In an example a rigid foam is produced with a density of 67kg/m³, open cell content of 95% and average cell diameter of 17μm.

CO2_phase_diagram

Carbon dioxide (P,T) phase diagram (Wikipedia)

 

Carbamate Blown Rigid Foams

Patent Title: A METHOD FOR PRODUCING AN OPEN CELL RIGID POLYURETHANE FOAM

 Number/Link: WO2018096101  WO2018096102

Applicant/Assignee:  Covestro

Publication date: 31 may 2018

Gist”: An open cell rigid foam is prepared using an amine-CO2 adduct and water as blowing agents

Why it is interesting: According to this invention an open cell rigid spray foam can be prepared from a conventional rigid foam formulation and a blowing agent consisting of 4-12 parts (pref.) on 100 parts of polyol of an adduct of a primary or secondary amine and carbon dioxide, together with 15 to 50 parts of water.  The properties of the resulting open cell, low density foam are said to be largely independent of ambient conditions and spray thickness. The foams are useful for thermal insulation applications in construction.

carbamate

Carbamate of N,N-dimethylaminopropylamine

 

PIR-Oxazolidone Foams from Natural Oils

Patent Title: METHOD FOR MANUFACTURING A POLYURETHANE-MODIFIED FOAM, FOAM OBTAINED, AND USES

Number/Link: US2018/0030196

Applicant/Assignee:  Soprema et al.

Publication date: 1 February 2018

Gist”: Unsaturated natural oils are epoxidized and reacted with an excess of isocyanate in the presence of a blowing agent.

Why it is interesting: Conventionally natural oils are incorporated into polyurethanes by first converting them to polyols (“NOPs”) by hydroformylation or epoxidation and ring opening and then reacting the NOPs with isocyanates. According to this invention the natural oils (preferably extracted from microalgae) are epoxidized and then mixed and heated with a (e.g. 3:1) excess of isocyanate (e.g. polymeric MDI) in the presence of a blowing agent (e.g. isopentane). It is said that oxazolidone rings from the isocyanate-epoxy reaction will form at the same time as isocyanurate rings and homopolymerized epoxides. The foams are said to be useful for thermal insulation applications.

oxazolidone

Formation of oxazolidone rings according to the invention

Solid-Solid PU PCM

Patent Title: PHASE-CHANGE MATERIAL FOR STORING THERMAL ENERGY, MANUFACTURING METHOD AND USES OF SUCH A MATERIAL

 Number/Link:  WO2017/198933 (French)

Applicant/Assignee:  UNIV CERGY-PONTOIS

Publication date: 23 november 2017

Gist”: A crosslinked PEG-HMDI elastomer can be used as phase change material.

Why it is interesting: Phase change materials, used to dampen temperature cycles in buildings, are well known. Most organic phase change materials (e.g. paraffines) show solid-liquid phase transitions and therefore need to be macro- or micro-encapsulated. This invention is about polyurethane PCMs with a solid to solid phase transition, and therefore need not be encapsulated. The PU PCM is prepared by reacting a polyethylene glycol with a diisocyanate like HMDI together with a crosslinker like glycerol. The solid elastomer is then ground into powder which can be used in construction materials like plaster or cement. The transition temperature and the latent heat of the PCM is controlled through the mole weight of the PEG (e.g. 1000 to 2000 Da) and the degree of crosslinking.
Solid-solid PU PCMs are not new, see WO2011/089061 (Huntsman), which (in my opinion) presents a more elegant and flexible solution to the problem.

Phase_Change_Materials

Temperature damping by PCM (Wikimedia Commons)

 

Viscoelastic Polyurethane Elastomers

Title:  IMPACT PROTECTION FOAM

Number/Link: US2017/0233519

Applicant/Assignee: Dow

Publication Date: 17 august 2017

“Gist”: Viscoelastic foams are prepared from MDI, castor oil and a hydrophilic polyether polyol.

Why it is interesting: According to this invention energy absorbing foams with relatively low density and a low hardness and resilience in the temperature range from about -10 to +40°C, can be produced by reacting a blend of hydrophilic and hydrophobic polyols containing castor oil, about 0.5 pbw water and some catalyst and chain extender with MDI.  The examples show foams of about 500 kg/m³ with hardness below shore 50A and ball rebound below 15% at both -10 and +23°C. The foams are said to be useful for impact-protective garments.

Castor oil

Castor oil component