Carbamate Blown Rigid Foams

Patent Title: A METHOD FOR PRODUCING AN OPEN CELL RIGID POLYURETHANE FOAM

 Number/Link: WO2018096101  WO2018096102

Applicant/Assignee:  Covestro

Publication date: 31 may 2018

Gist”: An open cell rigid foam is prepared using an amine-CO2 adduct and water as blowing agents

Why it is interesting: According to this invention an open cell rigid spray foam can be prepared from a conventional rigid foam formulation and a blowing agent consisting of 4-12 parts (pref.) on 100 parts of polyol of an adduct of a primary or secondary amine and carbon dioxide, together with 15 to 50 parts of water.  The properties of the resulting open cell, low density foam are said to be largely independent of ambient conditions and spray thickness. The foams are useful for thermal insulation applications in construction.

carbamate

Carbamate of N,N-dimethylaminopropylamine

 

PIR-Oxazolidone Foams from Natural Oils

Patent Title: METHOD FOR MANUFACTURING A POLYURETHANE-MODIFIED FOAM, FOAM OBTAINED, AND USES

Number/Link: US2018/0030196

Applicant/Assignee:  Soprema et al.

Publication date: 1 February 2018

Gist”: Unsaturated natural oils are epoxidized and reacted with an excess of isocyanate in the presence of a blowing agent.

Why it is interesting: Conventionally natural oils are incorporated into polyurethanes by first converting them to polyols (“NOPs”) by hydroformylation or epoxidation and ring opening and then reacting the NOPs with isocyanates. According to this invention the natural oils (preferably extracted from microalgae) are epoxidized and then mixed and heated with a (e.g. 3:1) excess of isocyanate (e.g. polymeric MDI) in the presence of a blowing agent (e.g. isopentane). It is said that oxazolidone rings from the isocyanate-epoxy reaction will form at the same time as isocyanurate rings and homopolymerized epoxides. The foams are said to be useful for thermal insulation applications.

oxazolidone

Formation of oxazolidone rings according to the invention

Solid-Solid PU PCM

Patent Title: PHASE-CHANGE MATERIAL FOR STORING THERMAL ENERGY, MANUFACTURING METHOD AND USES OF SUCH A MATERIAL

 Number/Link:  WO2017/198933 (French)

Applicant/Assignee:  UNIV CERGY-PONTOIS

Publication date: 23 november 2017

Gist”: A crosslinked PEG-HMDI elastomer can be used as phase change material.

Why it is interesting: Phase change materials, used to dampen temperature cycles in buildings, are well known. Most organic phase change materials (e.g. paraffines) show solid-liquid phase transitions and therefore need to be macro- or micro-encapsulated. This invention is about polyurethane PCMs with a solid to solid phase transition, and therefore need not be encapsulated. The PU PCM is prepared by reacting a polyethylene glycol with a diisocyanate like HMDI together with a crosslinker like glycerol. The solid elastomer is then ground into powder which can be used in construction materials like plaster or cement. The transition temperature and the latent heat of the PCM is controlled through the mole weight of the PEG (e.g. 1000 to 2000 Da) and the degree of crosslinking.
Solid-solid PU PCMs are not new, see WO2011/089061 (Huntsman), which (in my opinion) presents a more elegant and flexible solution to the problem.

Phase_Change_Materials

Temperature damping by PCM (Wikimedia Commons)

 

Viscoelastic Polyurethane Elastomers

Title:  IMPACT PROTECTION FOAM

Number/Link: US2017/0233519

Applicant/Assignee: Dow

Publication Date: 17 august 2017

“Gist”: Viscoelastic foams are prepared from MDI, castor oil and a hydrophilic polyether polyol.

Why it is interesting: According to this invention energy absorbing foams with relatively low density and a low hardness and resilience in the temperature range from about -10 to +40°C, can be produced by reacting a blend of hydrophilic and hydrophobic polyols containing castor oil, about 0.5 pbw water and some catalyst and chain extender with MDI.  The examples show foams of about 500 kg/m³ with hardness below shore 50A and ball rebound below 15% at both -10 and +23°C. The foams are said to be useful for impact-protective garments.

Castor oil

Castor oil component

PCM Containing PU Gels

Title: Temperature Regulating Polyurethane Gels

Number/Link: US2017/0210961

Applicant/Assignee: Technogel

Publication Date: 27 july 2017

“Gist”: Fatty acid ester PCMs are incorporated into Technogel-type gels without encapsulation

Why it is interesting: Polyurethane gels have been discussed before in this blog. The current invention is about “Technogel-type”  gels, made at low NCO-index and high functionality, that contain phase change materials (PCMs). The PCMs are esters of fatty acids that can be blended in molten state with the low EO polyol to form a clear solution, which is then reacted with isocyanate to form the gel. Despite not being encapsulated or forming a separate phase, the PCMs can reversibly melt and crsytallize while in the fluid phase of the gel. In the examples blends of lauryl laurate (C12-C12) and myristyl myristate (C14-C14) are used as PCM such that the phase change temperature is about 22-38°C.  The gels are said to be useful for ‘close to body’ comfort applications especially for use in matresses to improve sleeping comfort.

Lauryl laurate