PIR-Oxazolidone Foams from Natural Oils

Patent Title: METHOD FOR MANUFACTURING A POLYURETHANE-MODIFIED FOAM, FOAM OBTAINED, AND USES

Number/Link: US2018/0030196

Applicant/Assignee:  Soprema et al.

Publication date: 1 February 2018

Gist”: Unsaturated natural oils are epoxidized and reacted with an excess of isocyanate in the presence of a blowing agent.

Why it is interesting: Conventionally natural oils are incorporated into polyurethanes by first converting them to polyols (“NOPs”) by hydroformylation or epoxidation and ring opening and then reacting the NOPs with isocyanates. According to this invention the natural oils (preferably extracted from microalgae) are epoxidized and then mixed and heated with a (e.g. 3:1) excess of isocyanate (e.g. polymeric MDI) in the presence of a blowing agent (e.g. isopentane). It is said that oxazolidone rings from the isocyanate-epoxy reaction will form at the same time as isocyanurate rings and homopolymerized epoxides. The foams are said to be useful for thermal insulation applications.

oxazolidone

Formation of oxazolidone rings according to the invention

Polyurethane-Epoxy IPN Composites

Patent Title: POLYMER COMPOSITE THERMAL INTERFACE MATERIAL WITH HIGH THERMAL CONDUCTIVITY

 Number/Link: WO2016/079627

Applicant/Assignee: IBM

Publication date: 26-05-2016

Gist”: PU-Epoxy IPN particle composites show improved thermal conductivity

Why it is interesting: The application is about thermally conductive adhesives for use with electronic components. Commonly these materials consist of polymers filled with thermally- (but not electrically-) conductive particles such as AlN, BN and ZnO. According to the invention the thermal conductivity of these composites can be improved by using a polyurethane-epoxy true interpenetrating polymer network (IPN) as the matrix. In the examples a MDI-polycaprolactone prepolymer is mixed with a BPA diglycidylether prepolymer and boron nitride (BN) particles and crosslinked using trimethylolpropane and imidazole.  The thermal conductivity of the composite shows a synergy, meaning that it is clearly higher than the conductivities of both the PU or EP composites. The synergy is said to be due to an enhanced distribution of the BN particles and (because this is IBM and they are very clever) due to enhanced phonon scattering.

Bisphenol-A diglycidylether

Bisphenol-A diglycidylether

Modified Polyols for Improved PU Adhesives

Title: POLYOL COMPOSITIONS FOR HOT MELT ADHESIVES

 Number/Link:WO2015/127276

Applicant/Assignee: IFS Industries

Publication date: 27-08-2015

Gist”: Polyester diols are partially capped with bulky glycidyl esters

Why it is interesting: According to this invention polyester (or polyether) polyols which are partially capped with a bulky glycidyl ester can be used to improve the adhesive properties of (reactive) polyurethane (hotmelt) adhesives. Specifically the adhesion to materials with low surface energies like ABS or polyolefines is said to improve. In the examples polyester diols prepared from adipic acid and hexanediol with a Mn of about 3000 are partially capped with the glycidyl ester of neodecanoic acid (“Versatic Acid 10”) and used in PU adhesive formulations.

Glycidyl ester of neodecanoic acid

Glycidyl ester of neodecanoic acid