Polyols from Natural Oils using the Alkyne Zipper Reaction

Title: POLYURETHANE MATERIALS FORMED FROM UNSATURATED PLANT OILS VIA AN ALKYNE ZIPPER REACTION

Number/Link: US2017/0166679 US2017/0166680

Applicant/Assignee: IBM

Publication Date: 15-june-2017

“Gist”: Oils are turned into alkyne alcohols, ‘zippered’ and oxidized to polyols

Why it is interesting: This is yet  another IBM patent application about interesting, albeit somewhat exotic, chemistry and featuring only “prophetic” examples. In this case unsaturated natural oils are first converted into unsaturated alcohols and then into alkynes by bromination and elimination.  The internal alkynes are then converted to terminal alkynes by an “alkyne zipper reaction” and then into hydroxyl groups by hydroboration and epoxidation/ring-opening. This series of reactions should result in polyols having two primary- and one or more secondary OH groups, useful, for example, for the preparation of sound absorbing foams.

Reaction sequence according to the invention

Aerogels from Isocyanates and Epoxies

Patent Title: ORGANIC AEROGELS BASED ON ISOCYANATE AND CYCLIC ETHER POLYMER NETWORKS

 Number/Link: WO2017016755

Applicant/Assignee: Henkel

Publication date: 2-feb-2017

Gist”: Isocyanate and epoxy are reacted in solvent and supercritically dried

Why it is interesting: While most ‘conventional’ aerogels are based on silica, organic aerogels, especially isocyanate-based aerogels, are also well known: polyurethane-, polyurea-, polyamide-, polyimide-, polycarbodiimide- and polyisocyanurate aerogels have all been reported. This invention adds another type of aerogel based on the reaction of isocyanates and cyclic ethers, esp. oxetanes and oxiranes. The isocyanate with a functionality of (pref.) 2 to 3, (e.g. 4,4′-MDI or methylidynetri-p-phenyletriisocyanate) is reacted with a cyclic ether  of (pref.) functionality of 2 to 3, (e.g. N,N-diglycidyl-4-glycidyloxianiline) in a suitable solvent (e.g. DMAc). After washing, the gel is dried with supercritical carbon dioxide. The materials are useful for thermal insulation and are said to have better mechanical properties compared to other organic aerogels.

N,N-Diglycidyl-4-glycidyloxyaniline

N,N-Diglycidyl-4-glycidyloxyaniline

 

 

In Situ Reticulated Viscoelastic Foams

Patent Title: VISCOELASTIC AND RETICULATED POLYURETHANE FOAM AND THE PREPARATION THEREOF

 Number/Link: WO2016/198433

Applicant/Assignee: Coverstro

Publication date: 15-dec-2016

Gist”: Composition of 3 semi-miscible polyols and a surfactant

Why it is interesting: This case claims a polyol composition for the preparation of a viscoelastic, reticulated foam without the need for a separate reticulation step. The composition consists of (at least) three polyols and a surfactant:  a low mole-weight all-PO ‘rigid’ triol, a conventional flexible polyol, a high- or all-EO polyol and some off-the-shelf silicone surfactant.  The composition is foamed with water and polymeric MDI or a polymeric MDI/TDI mixture. This is a well-known composition and it is hard to see why this should result in a reticulated foam – unless maybe in some fine-tuned cases.  Apart from the ball rebound being less than 15% the claims do not mention any parameters related to reticulated foam (such as airflow). It is doubtful (in my opinion) that this will get granted.

Cell structure of a reticulated foam

Cell structure of a reticulated foam

Formic Acid Blown EPIC Foams

Patent Title: ISOCYANATE-BASED TEMPERATURE-RESISTANT FOAMS WITH HIGH FLAME RESISTANCE

 Number/Link: WO2016/131874

Applicant/Assignee: BASF, Covestro

Publication date: 25-08-2016

Gist”:  One shot rigid isocyanate-epoxy foams blown with formic acid

Why it is interesting: This is the first in a series of (at least) 3 patent applications apparently resulting from a cooperation between BASF and Covestro on epoxy-isocyanate (“EPIC”) foams.  The other applications are WO2016/131878 and WO2016/131880 published on the same date. More publications may follow.
The current invention is about temperature-resistant foams with reportedly very high mechanical properties prepared form a one-shot system comprising a (pref.) high functional MDI, a (pref.) bisphenol-A or bisphenol-F polyglycidylether, at least one reactive amine catalyst and a blowing agent comprising formic acid. The ratio of iso to epoxy groups is (pref.) 3:1 to 15:1. The resulting materials are post-cured at 200°C. The foams contain no, or very little, urethane or urea groups and are said to be especially useful in laminates a.o.  In the examples foams with densities of 25-35 kg/m³ with a thermal conductivity as low as 20 mW/mK are shown.

Bisphenol-F diglycidylether

Bisphenol-F diglycidylether

Novel Cellopener for Flexible- and Viscoelastic PU Foams

Patent Title: POLYURETHANE FOAM WITH AQUEOUS POLYMER DISPERSION  & VISCOELASTIC POLYURETHANE FOAM WITH AQUEOUS POLYMER DISPERSION

 Number/Link: WO2016/100306 & WO2016/100263

Applicant/Assignee: Dow

Publication date: 23-06-2016

Gist”: Dispersions of acid modified olefins in water act as cellopeners

Why it is interesting: According to this invention aqueous dispersions of acid-modified olefins can be used as cellopeners for conventional, high resilience and viscoelastic foams. The examples show that a 40% ‘solids’ dispersion of an acrylic acid – ethylene copolymer in water, used in about 1 to 2% on the total isocyanate-reactive composition has a clearly positive effect on foam air-flow properties. The polymer dispersions can be made according to Dow’s proprietary BLUEWAVE™ extrusion technology.

The BLUEWAVE dispersion process

The BLUEWAVE dispersion process