Natural Oil Polyols using Self-Metathesis

Patent Title: POLYOLS FORMED FROM SELF-METATHESIZED NATURAL OILS AND THEIR USE IN MAKING POLYURETHANE FOAMS

 Number/Link: US2017/0291983

Applicant/Assignee:  Trent Univ.

Publication date: 12 october 2017

Gist”: NOPs from self-metathesized soy oils

Why it is interesting: The use of metathesis chemistry to modify natural oils before converting them to polyols has been discussed before in this blog:  see e.g. US2015/0337073, to the same applicant, which relates to cross-metathesis of natural oils using (e.g.) 1-butene. The current case is about self-metathesis of unsaturated natural oils, resulting in ‘metathesis oligomers’ which are then (partially) epoxidated and hydroxylated to prepare the polyols. In the examples soybean oil is turned into polyols with OH values between about 100 and 250, which are used to make flexible foams with densities of more than 150 kg/m³.

Oligomer from self-metathesis of unsaturated triglycerid


Viscoelastic Polyurethane Elastomers

Title:  IMPACT PROTECTION FOAM

Number/Link: US2017/0233519

Applicant/Assignee: Dow

Publication Date: 17 august 2017

“Gist”: Viscoelastic foams are prepared from MDI, castor oil and a hydrophilic polyether polyol.

Why it is interesting: According to this invention energy absorbing foams with relatively low density and a low hardness and resilience in the temperature range from about -10 to +40°C, can be produced by reacting a blend of hydrophilic and hydrophobic polyols containing castor oil, about 0.5 pbw water and some catalyst and chain extender with MDI.  The examples show foams of about 500 kg/m³ with hardness below shore 50A and ball rebound below 15% at both -10 and +23°C. The foams are said to be useful for impact-protective garments.

Castor oil

Castor oil component

Polyols from Natural Oils using the Alkyne Zipper Reaction

Title: POLYURETHANE MATERIALS FORMED FROM UNSATURATED PLANT OILS VIA AN ALKYNE ZIPPER REACTION

Number/Link: US2017/0166679 US2017/0166680

Applicant/Assignee: IBM

Publication Date: 15-june-2017

“Gist”: Oils are turned into alkyne alcohols, ‘zippered’ and oxidized to polyols

Why it is interesting: This is yet  another IBM patent application about interesting, albeit somewhat exotic, chemistry and featuring only “prophetic” examples. In this case unsaturated natural oils are first converted into unsaturated alcohols and then into alkynes by bromination and elimination.  The internal alkynes are then converted to terminal alkynes by an “alkyne zipper reaction” and then into hydroxyl groups by hydroboration and epoxidation/ring-opening. This series of reactions should result in polyols having two primary- and one or more secondary OH groups, useful, for example, for the preparation of sound absorbing foams.

Reaction sequence according to the invention

TPU from Oleic Acid

Title: RENEWABLY DERIVED THERMOPLASTIC POLYESTER-BASED URETHANES AND METHODS OF MAKING AND USING THE SAME

Number/Link: US2017/0145145

Applicant/Assignee: Trent University

Publication Date: 25-may-2017

“Gist”: Thermoplastic polyurethane made entirely from C9 monomers derived from oleic acid.

Why it is interesting: Azaleic acid can be prepared by oxidative cleavage of the oleic acid double bond.  Azaleic acid in turn can be converted to 1,9-nonanediol and to 1,7-heptamethyldiisocyanate via azides and Curtius rearrangment (see previous blog post). In this invention a polyester diol is prepared from azaleic acid and nonanediol and is then reacted with 1,7-heptamethylenediisocyanate together with nonanediol as chain extender, resulting in a phase-separated TPU. Best properties are obtained when the nonanediol is first prepolymerized with the diisocyanate. The TPU is said to degrade without cytotoxic degradation products, and is therefore useful for medical applications such as resorbable implants and scaffolds.
Related case: US2017/0145146.

Oleic Acid

 

Non-Isocyanate Poly(Amide-Hydroxyurethanes)

Patent Title: NON-ISOCYANATE POLYURETHANES AND METHODS OF MAKING AND USING THE SAME

 Number/Link: WO 2017/ 030880

Applicant/Assignee: ELEVANCE RENEWABLE SCIENCES

Publication date: 23-feb-2017

Gist”: Telechelic cyclocarbonate-alkylesters are reacted with diamines in the melt

Why it is interesting: According to this invention (ω-) unsaturated alkylesters can be converted to mono-cyclocarbonate alkylesters and then reacted with diamines to prepare thermoplastic poly(amide-hydroxyurethanes) (PAHU). For example methyl-9-decenoate was first epoxidized and then reacted with CO2 to produce 9,10-cyclic carbonate-methyl decanoate. After separation and washing the cyclocarbonate was reacted – in the melt- with a mixture of dodecane diamine and a PTMO diamine (Jeffamine THF-100). It is said that the unsaturated alkylesters can be prepared from natural oils using (cross- or self-) metathesis followed (or preceded) by transesterifaction with alkanols.

PAHU preparation scheme

PAHU preparation scheme