PU Flexible Foams with Reduced Acetaldehyde Emissions

Title: METHOD FOR THE REDUCTION OF ALDEHYDE EMISSION IN POLYURETHANE FOAM

Number/Link: WO2017/134296

Applicant/Assignee: Huntsman

Publication Date: 10 August 2017

“Gist”: Cyanoacetamide is used as aldehyde scavenger

Why it is interesting: Reduction of aldehyde emissions from (especially flexible) polyurethane foams remains an important issue and has already been discussed a number of times on this blog. According to this case the use of (pref) 0.05 to 0.5 pbw of cyanoacetamide in a flexible foam formulation will reduce the emission of formaldehyde, acetaldehyde, propionaldehyde, and possibly of higher aldehydes as well.
While an interesting compound, the use of cyanoacetamide in polyurethanes is not new and the effect is hardly surprising.

Cyanoacetamide

 

Advertisement

Non-Isocyanate Polyurethane Flexible Foams

Title: NON ISOCYANATE POLYURETHANE FOAMS

Number/LinkUS2017/0218124

Applicant/Assignee: Faurecia

Publication Date: 3 august 2017

“Gist”: Flex foams from a blend of two polyfunctional cyclocarbonates, a polyamine and HFC blowing agent.

Why it is interesting: While non-isocyanate polyurethanes are well known by now, examples of NIPU foams, especially flexible foams are rare. According to this case NIPU foams ‘having good resilience and low density’ can be prepared by reacting two polyfunctional carbonates A and B with a polyamine in the presence of a blowing agent and a catalyst. Cyclocarbonate A is (pref) trimethylolpropaneglycidylether carbonate and B is a polyetherpolyol with the OH groups replaced by glycidylcarbonate groups, for example an alkoxyalated trimethylolpropaneglycidylether carbonate. The polyamine is e.g. 1,6 diaminohexane.  The ratio A:B is preferably about 60:40.  In the examples no value for the resilience is given (but my guess based on the Tg is that it is probably not very high) and the lowest moulded density achieved is 140 kg/m³. So still a long way to go..

Glycidylether carbonate of alkoxylkated trimethylolpropane

TPU Aerosol

Title: POLYURETHANE AEROSOL COMPOSITIONS, ARTICLES, AND RELATED METHODS

Number/Link: US20170198150

Applicant/Assignee: 3M

Publication Date: 13-july-2017  (priority PCT)

“Gist”: Aqueous dispersion of a hydrazide-extended  TPU can be sprayed as aerosol to make protective films

Why it is interesting: An aqueous thermoplastic polyurethane dispersion is prepared from a non-yellowing diisocyanate, e.g. bis(4-isocyanatocyclohexyl), a diol (e.g. PPG2000), a difunctional hydrazine or hydrazide chain extender (e.g. 1,3-diaminourea) and a water solubilizing compound (e.g. dimethylolpropionic acid).  Together with a propellant the, composition is shelf-stable and can be aerosol-sprayed to form clear, non-yellowing protective films.

3M’s aerosol-sprayed protective film.

  • Pages

  • Categories

  • Enter your email address to follow this blog and receive notifications of new posts by email.

    Join 1,089 other subscribers
  • Follow Innovation in PU on Twitter

%d bloggers like this: