Breathable TPU Membranes

Patent Title: POROUS THERMOPLASTIC MEMBRANES

 Number/Link: WO2017/178482

Applicant/Assignee:  BASF

Publication date: 19-october-2017

Gist”: Semi-permeable membranes are made by phase inversion of all-hardblock TPU solutions

Why it is interesting: ‘Breathable” membranes show a high resistance to liquid water permeation (LEP) combined with a high water vapour permeability (WDD). According to this invention breathable polyurethane membranes can be prepared by dissolving an all-hardblock thermoplastic polyurethane in a polar, aprotic solvent (like N-methyl pyrrolidone) together with a water soluble compound, casting a film and coagulating the film with water. In the examples diisocyanates (MDI, TDI and HDI) are stoichiometrically reacted with chain extenders (MEG, BDO and HDO).  The resulting materials were schredded and dissolved in NMP together with some glycerol. 150 μm thick films were cast on glass and coagulated in water, resulting in membranes with an average pore size ranging between 4 and 500 nm.  The membranes are said to be useful to make breathable fabrics for outdoor wear e.g. (“Gore Tex” (TM) – type materials)

N-methyl-2-pyrrolidone

 

 

 

 

Rigid Thermoplastic Polyurethanes

Patent Title: ISOCYANATE-MODIFIED RIGID THERMOPLASTIC POLYMER COMPOSITIONS

 Number/Link: WO2017/146948  WO2017/146949

Applicant/Assignee: Eastman Chemical

Publication date: 31 august 2017

Gist”: A “rigid”, high Tg polyester diol is extended with 4,4′ MDI

Why it is interesting: Rigid, high modulus TPUs have been known for a long time – see e.g. Upjohn’s classic patent on ‘Isoplast’ from 1981. These materials are high hardblock TPUs made from diisocyanates, chain extenders with only a small amount of high molecular weight diol as an impact modifier. According to the current invention however, rigid TPUs can be made using less than 40% (w/w) of diisocyanate, a high Tg polyester diol and optionally some chain extender.  The polyester is prepared from ‘rigid’ diols like isosorbide or 1,4-cyclohexanedimethanol together with a ‘rigid’ diacid like terephthalic acid, such that the diol has a MW of more than 400 Dalton and a Tg of more than 40°C. The diisocyanate is pref. 4,4-MDI. The rigid TPUs have a Tg of more than 145°C and a tensile modulus of 1 GPa or higher. They are said to be less moisture sensitive than conventional rigid TPUs.

1,4-cyclohexanedimethanol

TPU Aerosol

Title: POLYURETHANE AEROSOL COMPOSITIONS, ARTICLES, AND RELATED METHODS

Number/Link: US20170198150

Applicant/Assignee: 3M

Publication Date: 13-july-2017  (priority PCT)

“Gist”: Aqueous dispersion of a hydrazide-extended  TPU can be sprayed as aerosol to make protective films

Why it is interesting: An aqueous thermoplastic polyurethane dispersion is prepared from a non-yellowing diisocyanate, e.g. bis(4-isocyanatocyclohexyl), a diol (e.g. PPG2000), a difunctional hydrazine or hydrazide chain extender (e.g. 1,3-diaminourea) and a water solubilizing compound (e.g. dimethylolpropionic acid).  Together with a propellant the, composition is shelf-stable and can be aerosol-sprayed to form clear, non-yellowing protective films.

3M’s aerosol-sprayed protective film.

TPU from Oleic Acid

Title: RENEWABLY DERIVED THERMOPLASTIC POLYESTER-BASED URETHANES AND METHODS OF MAKING AND USING THE SAME

Number/Link: US2017/0145145

Applicant/Assignee: Trent University

Publication Date: 25-may-2017

“Gist”: Thermoplastic polyurethane made entirely from C9 monomers derived from oleic acid.

Why it is interesting: Azaleic acid can be prepared by oxidative cleavage of the oleic acid double bond.  Azaleic acid in turn can be converted to 1,9-nonanediol and to 1,7-heptamethyldiisocyanate via azides and Curtius rearrangment (see previous blog post). In this invention a polyester diol is prepared from azaleic acid and nonanediol and is then reacted with 1,7-heptamethylenediisocyanate together with nonanediol as chain extender, resulting in a phase-separated TPU. Best properties are obtained when the nonanediol is first prepolymerized with the diisocyanate. The TPU is said to degrade without cytotoxic degradation products, and is therefore useful for medical applications such as resorbable implants and scaffolds.
Related case: US2017/0145146.

Oleic Acid

 

Crystalline High-Hardblock TPU

Title: CRYSTALLINE HIGH MODULUS THERMOPLASTIC POLYURETHANE

Number/LinkWO2017079101  WO2017079188

Applicant/Assignee: Lubrizol

Publication Date: 11 May 2017

“Gist”: High-hardblock TPU using ‘stacking’ chain extenders and MDI

Why it is interesting: Thermoplastic polyurethanes with hardblock levels of 75% and higher were first patented by Upjohn in 1981 in a “classic” patent which has been discussed before in this blog. These materials – often marketed under the ‘ISOPLAST’ tradename- are usually produced from a diol, 4,4′-MDI and a (mixture of) chain extender(s) comprising a ‘non-stacking’ chain extender like cyclohexanedimethylol, neopentylglycol, MPdiol etc. to control crystallinity. In the current invention only ‘stacking’ chain extenders are used in an otherwise identical composition, resulting -unsurprisingly- in a more crystalline material with a higher modulus and melting temperature. It is also said that these materials are easier to compound with e.g. fire retardants.
Even if this idea were formally ‘new’ I doubt its inventiveness and therefore its patentability.

The famous ISOPLAST(TM) nail