Classic PU Patent of the Month: Bayer on Viscoelastic Flexible Foams (1988)

Title: Process for the preparation of cold-hardening flexible polyurethane foams having excellent deadening properties.

 Number/Link: EP0331941

Applicant/Assignee: Bayer

Publication date: 13-09-1989

Gist”: Highly damping flexible foams are made using a mixture of three specific polyols.

Why it is interesting: “Visco” or “memory” foams are currently known especially for their use in matresses and pillows.  Originally however these “dead” foams were developed as vibration damping materials for acoustic applications. The invention is based on the use of three specific polyols: (a) a ‘normal’ PO/EO-tipped triol with a hydroxyl value of about 28, (b) a ‘rigid’ all-PO triol with OHv of about 350 and (c) a ‘high EO’ triol with an EO content of about 75% and OHv of 36. The polyols are used in a ratio of about 25:15:60 (a:b:c) together with either TDI or MDI. Because the polyols are relatively immiscible the resulting foams have a soft-phase glass transition which is ‘smeared’ out over a temperature range controlled by polyol (a) at the low end and by (c) at the high end – ranging e.g. from -30°C to +10°C. This wide glass transition in turn results in a very wide damping frequency range.  A very clever idea that has been copied many times.

Polyurethane "memory foam"

Polyurethane “memory foam”

PPE-Filled Rigid Foams

Title: RIGID FOAM AND ASSOCIATED ARTICLE AND METHOD

 Number/Link: WO2015/012989

Applicant/Assignee: SABIC

Publication date: 29-01-2015

Gist”: Rigid polyurethane foams containing polyphenylene ether particles

Why it is interesting: This invention is about rigid PU or PIR (polyisocyanurate) foams containing up to 25% w/w on the total composition of poly(2,6-dimethyl-1,4-phenylenether) particles.  The particles have a mean particle size of about 6 µm and are prepared by jet milling a commercial grade of PPE powder. The resulting foams are said to have reduced flammability and water absorption.  This is the second patent application that SABIC files on PPE-PU hybrids or combinations.  An interesting development but it is hard to believe that these ideas are practical and economical.

poly(2,6-dimethyl-1,4-phenyleneether)

poly(2,6-dimethyl-1,4-phenylene ether)

Flexible Foams from Inverse NOP Prepolymers

Title: Polyurethane Foam

 Number/Link:US2014329923

Applicant/Assignee: Green Urethanes

Publication date: 06-11-2014 (priority PCT)

Gist”: Flexible polyurethane foams based on OH-ended natural-oil polyol prepolymers

Why it is interesting: Polyols based on natural oils (NOPs) such as rapeseed-, soy-, castor oil and the like are hydrophobic, have sterically hindered hydroxyl groups and are therefore not compatible with conventionally used polyols and isocyanates.   The amount of natural oil-based polyols that can be used is therefore limited to less than about 30% for conventional flexible slabstock and even less (5-10%) for HR foams. According to the current invention, prepolymerizing the NOP with a multifunctional isocyanate to form an OH-ended (‘inverse’) prepolymer, improves compatibility and reactivity and even reduces or eliminates the typical smell associated with these compounds. In the examples about 10% of the OH groups of different types of NOPs are pre-reacted with polymeric MDI using a gelling catalyst.  The prepolymers are then foamed using TDI, water and conventional polyols. Flexible foams are produced containing 50-75% NOP on the total amount of polyol used.

Castor Oil

Typical castor oil component

  • Pages

  • Categories

  • Enter your email address to follow this blog and receive notifications of new posts by email.

    Join 259 other subscribers
  • Follow Innovation in PU on Twitter