TPU from Oleic Acid

Title: RENEWABLY DERIVED THERMOPLASTIC POLYESTER-BASED URETHANES AND METHODS OF MAKING AND USING THE SAME

Number/Link: US2017/0145145

Applicant/Assignee: Trent University

Publication Date: 25-may-2017

“Gist”: Thermoplastic polyurethane made entirely from C9 monomers derived from oleic acid.

Why it is interesting: Azaleic acid can be prepared by oxidative cleavage of the oleic acid double bond.  Azaleic acid in turn can be converted to 1,9-nonanediol and to 1,7-heptamethyldiisocyanate via azides and Curtius rearrangment (see previous blog post). In this invention a polyester diol is prepared from azaleic acid and nonanediol and is then reacted with 1,7-heptamethylenediisocyanate together with nonanediol as chain extender, resulting in a phase-separated TPU. Best properties are obtained when the nonanediol is first prepolymerized with the diisocyanate. The TPU is said to degrade without cytotoxic degradation products, and is therefore useful for medical applications such as resorbable implants and scaffolds.
Related case: US2017/0145146.

Oleic Acid

 

TPU with Moisture-Controlled Flexibility

Title: THERMOPLASTIC POLYURETHANE MATERIALS FOR FORMING MEDICAL DEVICES

Number/Link: Wo2017/066381

Applicant/Assignee: Becton Dickinson

Publication Date: 20 april 2017

“Gist”: High hardblock TPU, based on side-chain branched chain extenders, softens in water

Why it is interesting: The invention is related to thermoplastic polyurethanes for medical applications especially for intravenous catheters. These catheters need to have a high stiffness when inserted but need to become flexible once in place to prevent injuries. This is accomplished with TPUs based on MDI, PTMEG and either 2,2-dimethyl-1,3-propanediol (neopentylglycol) or 2-methyl-1,3-propanediol (MPdiol) and having a hardblock content of 50 to 75%. The examples show indeed an increased stiffness at ambient conditions and a larger softening when soaked in saline solution compared to TPU produced with a linear chain extender. It is however not mentioned which linear chain extender was used.

Neopentylglycol

Highly Tuneable Shape Memory Polyurethanes

Patent Title: PROCESSABLE, TUNABLE THIOL-ENE CROSSLINKED POLYURETHANE SHAPE MEMORY POLYMERS

 Number/Link: WO2016/126703

Applicant/Assignee: Texas A&M University

Publication date: 11-08-2016

Gist”: SMPUs are made from combinations of different diisocyanates and chain extenders and different levels of crosslinking using thiol-ene click chemistry

Why it is interesting: This invention is about shape memory polyurethanes with tuneable glass transition temperature and stiffness. In a first step a low mole weight TPU is prepared from a diisocyanate and a short chain diol including some trimethylolpropane allyether (TMPAE) and allylalcohol as chain stopper. The TPU is then blended with a polythiol and a photoinitiator to allow for UV curing. The Tg can be tuned from 30 and 105°C by combining different types of chain extenders and di-iso’s ranging from DEG-HDI to CHDM-H12MDI.  The modulus (in the rubber state) can be  varied between 0.4 to 20 MPa by controlling the level of crosslinking through the amount of TMPAE and amount and type of polythiol.  The SMPUs are said to be especially useful for biomedical applications.

Reaction scheme of the invention

Reaction scheme of the invention

Thermoplastic Polyurethane with a Percisely Controlled Biodegradation Rate

Title: PROCESS FOR MAKING BIODEGRADABLE AND/OR BIOABSORBABLE POLYMERS

 Number/Link: WO2014/004334

Applicant/Assignee: Lubrizol

Publication date: 03-01-2014

Gist”: Two sets of parameters are given (and claimed) which, when iteratively adjusted, allow to independently modify the mechanical properties and biodegradation rate of a TPU.

Why it is interesting: Many biomedical materials for implants such as screws, bone plates, tissue scaffolds, pins etc need high mechanical properties but also a controlled biodegradation rate which can vary from weeks to years.  According to this case the precise control of the degradation rate is not possible with currently available bio-polymers.  The invention claims two sets of parameters one which controls the physical properties of a TPU like the molecular weight, harblock content, crystallinity etc, and another set which controls the biodegradation rate like the amount of ‘hydrolyzable units’ in the backbone, hydrophilicity ect. It is claimed that both mechanical properties and degradation rate can be independently controlled by adjusting one or more parameters of each set. In the examples TPUs are prepared from HMDI, 1,4-butane diol and poly(lactide-co-caprolactone) diols where the lactide is the hydrolyzable unit.

A poly(lactide-co-caprolactone)

A poly(lactide-co-caprolactone)