PU Rigid Foams from Biomass Proteins

Title: POLYOLS FROM BIOMASS AND POLYMERIC PRODUCTS PRODUCED THEREFROM

 Number/Link:WO2015/105542

Applicant/Assignee:  Inventors

Publication date: 16-07-2015

Gist”: Soy bean proteins are hydrolysed and reacted with diamines and cylocarbonates to produce “rigid” polyols.

Why it is interesting: During recent years a lot of research has been done on the use of renewable raw materials in polyurethanes.  Most of this research was on the use of natural oils despite the fact that the availability of biomass proteins is much higher. Soybeans for example contain about twice as much protein (about 38% w/w) than oil (18%) and the price is about half that of the oil. According to this invention soybean proteins are hydrolysed into amino acids which are then reacted with ethylene diamine to make amine-ended monomers.  These monomers are reacted with a cyclocarbonate (ethylene carbonate or glycerol carbonate) resulting in a mixture of hydroxyurethane oligomers. The mixture is a low viscous liquid with high hydroxyl value useful for the production of rigid foams.

Reaction sequence according to the invention

Reaction sequence according to the invention

Polyurethane-Polyamides from Dimer Diacids

Title: A POLYOL BASED ON DIMER FATTY ACID RESIDUES AND THE CORRESPONDING POLYURETHANES

 Number/Link:WO2015/097433

Applicant/Assignee: Croda

Publication date: 2-07-2015

Gist”: Polyurethane/polyamide elastomers based on dimer diacids and long chain dicarboxylic acids

Why it is interesting: Polyurethane elastomers (and thermoplastic elastomers) based on dimer diacids or dimer diols are very hydrophobic and hydrolysis resistant but are relatively soft with lowish mechanical properties. According to this invention, using a blend of a dimer diacid (or -diol) and a (semi-) crystalline C17 to C32 dicarboxilic acid (or -diol) results in elastomers with greatly improved hardness and tensile strength while retaining flexibility and hydrolysis resistance. The C17 to C32 dicarboxylic acids can be prepared by a self-metathesis reaction of unsaturated fatty acid esters.  In the examples a C36 dimer diacid is used together with 1,18-octadodecanoic acid (prepared by metathesis from methyl oleate).  This is reacted ‘one shot’ with 4,4′ MDI and hexanediol or DEG, resulting in 85 shore A elastomers with high elongation and hydrolysis resistance.

A C36 dimer diacid

A C36 dimer diacid

Polyols from Epoxies and Cardanol

Title: CARDANOL MODIFIED EPOXY POLYOL

 Number/Link: WO2015/077944  WO2015/077945 WO2015/078178

Applicant/Assignee: Dow

Publication date: 4-06-2015

Gist”: Polyols are prepared by reacting an epoxy resin with  cashew nutshell liquid.

Why it is interesting: Cardanol is the main component of  cashew nutshell liquid which is a by-product of cashew nut processing. It is a “surfactant-like” phenolic compound which, when reacted with a polyepoxide, will result in a polyol with sec-OH groups. When used in polyurethane formulations these polyols will (unsurprisingly) be slow-reacting, highly hydrophobic and show compatibilizing properties vs apolar compounds. Dow have therefore filed three patent applications on PU systems containing these polyols: one on slowly-reacting PU systems for filament winding, one on highly hydrophobic PU elastomers and one on asphalt-PU compositions.
These are interesting polyols but they could be hard to process in my opinion.

Cardanol is reacted with bisphenol-A diglycidylether resulting in a diol according to the invention

Cardanol is reacted with bisphenol-A diglycidylether resulting in a diol according to the invention

  • Pages

  • Categories

  • Enter your email address to follow this blog and receive notifications of new posts by email.

    Join 259 other subscribers
  • Follow Innovation in PU on Twitter