Novel Cellopener for Flexible- and Viscoelastic PU Foams

Patent Title: POLYURETHANE FOAM WITH AQUEOUS POLYMER DISPERSION  & VISCOELASTIC POLYURETHANE FOAM WITH AQUEOUS POLYMER DISPERSION

 Number/Link: WO2016/100306 & WO2016/100263

Applicant/Assignee: Dow

Publication date: 23-06-2016

Gist”: Dispersions of acid modified olefins in water act as cellopeners

Why it is interesting: According to this invention aqueous dispersions of acid-modified olefins can be used as cellopeners for conventional, high resilience and viscoelastic foams. The examples show that a 40% ‘solids’ dispersion of an acrylic acid – ethylene copolymer in water, used in about 1 to 2% on the total isocyanate-reactive composition has a clearly positive effect on foam air-flow properties. The polymer dispersions can be made according to Dow’s proprietary BLUEWAVE™ extrusion technology.

The BLUEWAVE dispersion process

The BLUEWAVE dispersion process

 

Advertisement

Novel Polyurethane Gels

Patent Title: POLYURETHANE BASED GEL COMPOSITION

 Number/Link: W016/036786

Applicant/Assignee: Dow

Publication date: 10-03-2016

Gist”: PU gels are made from MDI prepolymer, high EO polyol and some diamine at low NCO index.

Why it is interesting: Polyurethane gels are well known and are sometimes used in comfort cushioning as layers or dispersed as particles in e.g. viscoelastic matresses. According to this invention plasticizer-free gels can be made by reacting a slightly branched, low NCO prepolymer ( based on 2,4′ and 4,4′ MDI and a high EO polyol), with a large amount of high EO polyol (triol or higher) and some amine-ended low mole-weight diol.
Although the material is said to be ‘plasticizer-free’not all of the polyol will be reacted at low NCO index.  However, because of its high polarity, the unreacted polyol will probably not leach.

A Polyurethane Gel

A Polyurethane Gel

Flexible PU Foam with Very Low Resilience

Patent Title: LOW-RESILIENCE POLYURETHANE FOAM AND PRODUCTION METHOD THEREOF

 Number/Link: US2016/0024268

Applicant/Assignee: Mitsui

Publication date: 28-01-2016

Gist”: Use of trans-BIC in viscoelastic flex foam

Why it is interesting: According to this invention low resilience flexible foams can be produced by reacting a mixture of two (optionally three) polyether polyols, water, a crosslinker and a catalyst with 1,4-bis(isocyanatomethyl)cyclohexane (BIC) where the BIC consists of (pref) 90% or more of the trans isomer. Higher trans-isomer is said to result in higher airflow and a finer cellstructure. In the examples a high MW all-PO triol and a low MW EO/PO triol with 18% EO tip is used, together with BIC at an NCO index of 70%.  The resulting foams have a high airflow and a (very) low resilience at densities between 50 and 70 kg/m³. While trans-BIC is clearly an interesting aliphatic di-iso, it is not widely available.

trans-1,4-bis(isocyanatomethyl)cyclohexane

trans-1,4-bis(isocyanatomethyl)cyclohexane

  • Pages

  • Categories

  • Enter your email address to follow this blog and receive notifications of new posts by email.

    Join 1,089 other subscribers
  • Follow Innovation in PU on Twitter

%d bloggers like this: