Self-Healing Polyurethane Coatings

Patent Title: Self-Repairing Polyurethane Networks

 Number/Link: US20160289495

Applicant/Assignee: Clemson University

Publication date: 6-10-2016

Gist”: Polyurethane networks with alkylated polysaccharide moiety show self-healing properties

Why it is interesting: Chitosan (pref.) is alkylated by reacting with dodecylaldehyde (in solvent) and reducing the resulting imine with sodium cyanoborohydride. The alkylated chitosan is then reacted with isocyanate and polyol.  When used as coating, the material is claimed to show self-healing properties when irradiated with UV light. Modifying the composition by incorporation of catechol, or by changing the saccharide allows for materials which ‘heal’ when exposed to ferric ions or carbon dioxide. No explanation for this behaviour is given and it is not immediately clear to me why this should work.

Self-healing network according to the invention. The isocyanate used was (E)-3,5-bis(6-isocyanatohexyl)- 6-( ( 6-isocyanatohexyl)imino )-1,3,5-oxadiazinane-2, 4-dione.

Self-healing network according to the invention. The isocyanate used was (E)-3,5-bis(6-isocyanatohexyl)-6-( ( 6-isocyanatohexyl)imino )-1,3,5-oxadiazinane-2,4-dione. ALK= alkyl, POL=polyol.

 

Polyurethane Tissue Adhesives

Patent Title: URETHANE DECOMPOSING METHOD AND URETHANE DECOMPOSING AGENT

 Number/Link:  US2016/0257800

Applicant/Assignee: Obihiro University

Publication date: 8-09-2016 (priority PCT/JP)

Gist”: Prepolymer from ether-ester polyol and aliphatic isocyanate

Why it is interesting: There is a growing trend in current surgerical practice to replace sutures and staples with adhesives. These tissue adhesives need to have a particular set of properties, like the correct viscosity, hardening speed, biodegradability and toxic and allergenic properties. Current surgical adhesives are often cyanoacrylates, which react very fast, are brittle and show poor biodegradability, or protein-based adhesives which are costly and form weak bonds. According to this invention an improved polyurethane tissue adhesive can be prepared from an isocyanate-ended prepolymer based on an aliphatic isocyanate and a polyol.  The polyol is prepared from a starter polyol or amine which is reacted with a mixture of an alkoxide and about 10-20% of a  lactide (or glycolide or cyclic acid anhydride).  The lactide is randomly copolymerized with the alkoxide using DMC catalysis. The polyol is then reacted with an aliphatic isocyanate, pref. HDI or IPDI in a NCO/OH ratio of about 8:1. After that monomeric isocyanate is removed by thin film distillation down to less than 1% free monomer.
The adhesives are said to be fast, non-toxic, non-allergenic and biodegradable.

L-Lactide

L-Lactide

Highly Tuneable Shape Memory Polyurethanes

Patent Title: PROCESSABLE, TUNABLE THIOL-ENE CROSSLINKED POLYURETHANE SHAPE MEMORY POLYMERS

 Number/Link: WO2016/126703

Applicant/Assignee: Texas A&M University

Publication date: 11-08-2016

Gist”: SMPUs are made from combinations of different diisocyanates and chain extenders and different levels of crosslinking using thiol-ene click chemistry

Why it is interesting: This invention is about shape memory polyurethanes with tuneable glass transition temperature and stiffness. In a first step a low mole weight TPU is prepared from a diisocyanate and a short chain diol including some trimethylolpropane allyether (TMPAE) and allylalcohol as chain stopper. The TPU is then blended with a polythiol and a photoinitiator to allow for UV curing. The Tg can be tuned from 30 and 105°C by combining different types of chain extenders and di-iso’s ranging from DEG-HDI to CHDM-H12MDI.  The modulus (in the rubber state) can be  varied between 0.4 to 20 MPa by controlling the level of crosslinking through the amount of TMPAE and amount and type of polythiol.  The SMPUs are said to be especially useful for biomedical applications.

Reaction scheme of the invention

Reaction scheme of the invention

  • Pages

  • Categories

  • Enter your email address to follow this blog and receive notifications of new posts by email.

    Join 259 other subscribers
  • Follow Innovation in PU on Twitter