TPU Nanocomposite


 Number/Link: WO2018/185650 (Spanish)


Publication date: 11 October 2018

Gist”: Protein-stabilized nano- calciumcarbonate particles are incorporated into a thermoplastic polyurethane composition

Why it is interesting: Calciumcarbonate nanoparticles are prepared by mixing a solution of sodium carbonate, sodium caseinate and calciumchloride in a high pressure homogenizer. Particles are formed of CaCO3 embedded in a protein matrix that stabilizes that particles against aggregation. Particle size is (pref) 150-300nm with primary CaCO3 particles of 5-10nm. The particles are used in an amount of (pref) 0.6-1% (w/w) on a TPU composition. The TPUs are said to show increased mechanical properties and improved cell growth and are said to be useful for biomedical applications.


Stabilized nanoparticles (Wikipedia)


Breathable TPU Membranes


 Number/Link: WO2017/178482

Applicant/Assignee:  BASF

Publication date: 19-october-2017

Gist”: Semi-permeable membranes are made by phase inversion of all-hardblock TPU solutions

Why it is interesting: ‘Breathable” membranes show a high resistance to liquid water permeation (LEP) combined with a high water vapour permeability (WDD). According to this invention breathable polyurethane membranes can be prepared by dissolving an all-hardblock thermoplastic polyurethane in a polar, aprotic solvent (like N-methyl pyrrolidone) together with a water soluble compound, casting a film and coagulating the film with water. In the examples diisocyanates (MDI, TDI and HDI) are stoichiometrically reacted with chain extenders (MEG, BDO and HDO).  The resulting materials were schredded and dissolved in NMP together with some glycerol. 150 μm thick films were cast on glass and coagulated in water, resulting in membranes with an average pore size ranging between 4 and 500 nm.  The membranes are said to be useful to make breathable fabrics for outdoor wear e.g. (“Gore Tex” (TM) – type materials)






PU-FPOSS Coating Compositions


Number/Link: US20170204291

Applicant/Assignee: Boeing

Publication Date: 20 July 2017  (published as PCT)

“Gist”: Ice repellent polyurethane coatings are prepared by incorporating F-POSS prepolymers

Why it is interesting: The invention is about coated surfaces that show reduced ice formation and/or adhesion. This is accomplished by incorporating fluorinated polyhedral oligomeric silsesquioxanes (F-POSS) into the composition. OH-functional F-POSS is prepared as per the scheme below, which is then reacted with polyisocyanates to prepare an NCO-functional F-POSS prepolymer.  The prepolymer can then be used in PU coating compositions, or reacted with amino-functional PDMS compounds and used as an additive in coating compositions.
It is believed that the F-POSS particles interfere with H-bond formation of ice to the coated surface.  Ice repellent surfaces are particularly useful for aircraft, wind turbines, cooling equipment and the like.

Synthesis of OH-functional trifluoropropyl POSS

  • Pages

  • Categories

  • Enter your email address to follow this blog and receive notifications of new posts by email.

    Join 1,089 other subscribers
  • Follow Innovation in PU on Twitter

%d bloggers like this: