Steam-Treated Polyisocyanurate

Title: PROCESS FOR MAKING URETHANE-ISOCYANURATES

 Number/Link: WO2014/160616

Applicant/Assignee: Dow

Publication date: 2-10-2014

Gist”: Treating PUR-PIR with hot water at superatmospheric pressure results in a Tg increase.

Why it is interesting: Fiber-reinforced phenol-formaldehyde composites are used to make pipes among other things.  They are however not completely stable in hot humid conditions so that they are less well suited for off-shore piping systems for example. According to this patent application, polyisocyanurate (PIR) or polyurethane-polyisocyanurate (PUR-PIR) systems are more suitable materials for such applications because properties of these materials remain stable and -surprisingly- glass transition temperature increases when subjected to high pressure water or steam. In the examples PUR-PIR systems based on polymeric MDI submerged in water at 120°C and 3500 kPa for 7 days show indeed an increase in Tg.  In my opinion it would be interesting to repeat the experiment with 4,4′-MDI based PUR/PIR.  Because 4,4′ MDI will show a higher conversion rate to PIR the ‘steam effect’ may well dissapear.

Isocyanurate group

Isocyanurate group

Prepregs from Glass Fiber and Reactive Polyurethane Powder

Title: PREPREGS AND MOLDINGS PRODUCED THEREFROM

 Number/Link: US2014065911

Applicant/Assignee: Evonik

Publication date: 6-03-2014

Gist”: A reactive polyurethane powder is prepared from a mixture of a  solid polyester polyol and a solid dimerised IPDI and subsequently used to make glass fiber prepregs.

Why it is interesting:  A polyurethane powder is made from (pref.) a mixture of  a solid (at room temperature) polyster polyol and a solid, blocked isocyanate.  The isocyanate is preferably an “internally” blocked IPDI.  Internally blocked meaning that the isocyanate contains uretidinedione groups.  The powder is scattered over a fibrous support and heated to over melting temperature but below curing temperature to make the prepreg.  Prepregs made with PU powder instead of the conventional resins have the advantage of being non-sticky, non-toxic and of having a very high storage stability (45 days in the examples).

Prepreg production with reactive PU powder

Prepreg production with reactive PU powder

Polyurethane “Combination Foam”: a TPU/PU Composite

Title: KOMBINATIONSSCHAUM

 Number/Link:  WO2014/023794   (German)

Applicant/Assignee: BASF

Publication date: 13-02-2014

Gist”: Foamed TPU particles are embedded in a foamed elastomer of the same chemical composition to improve mechanical properties.

Why it is interesting: Foamed, closed-cell TPU particles are incorporated in a foamed, open-cell PU matrix which has a higher density and is produced from essentially the same chemicals, resulting in perfect compatibility and adhesion between the two components.  In the examples 30-40 % (w/w) of expanded TPU particles with a bulk density (“Shüttdichte”) of 89 kg/m³ are incorporated in an elastomer with a density of 200-300 kg/m³. Size of the TPU particles is not given but the preferred size range is 1mm to 2 cm.

Expanded TPU particles by BASF

Expanded TPU particles by BASF

  • Pages

  • Categories

  • Enter your email address to follow this blog and receive notifications of new posts by email.

    Join 259 other subscribers
  • Follow Innovation in PU on Twitter