Hydrophobic Coatings from BO Polyols

Title: POLYURETHANE ENCAPSULATE

 Number/Link: WO2014/176390

Applicant/Assignee: Dow

Publication date: 30-10-2014

Gist”: Use of polybutyleneoxide polyols for hydrophobic encapsulants.

Why it is interesting: The encapsulation of water soluble compounds for controlled release, like e.g. plant nutrients and fertilizers, requires a relatively hydrophobic coating.  Often this is accomplished with polyurethane coatings to which hydrophic compounds are added such as castor oil derivatives. These additives can however have a deleterious effect on other coating properties.  According to this invention encapsulation coatings with good mechanical properties and improved water absorption and water vapour transmission properties can be prepared from polybutyleneoxide triols and polymeric MDI without the need for other additives.

Butylene oxide

Butylene oxide

Hydrolysis Resistant Polyester Polyurethane

Title: A POLYESTER POLYURETHANE MATERIAL WITH LONG TERM HYDROLYSIS RESISTANCE

 Number/Link: WO2014114614

Applicant/Assignee: Bayer

Publication date: 31-07-2014

Gist”: Hydrolysis resistant polyurethane elastomers can be prepared from sterically hindered polyester polyols together with a perchlorate salt.

Why it is interesting: Because of their high mechanical properties and abrasion resistance, polyester-based polyurethane elastomers are a material of choice in e.g. the footwear and automotive industries. Main drawback however is their susceptibility to hydrolysis which causes loss of physical properties in moist environments.  According to the current invention, hydrolysis resistance can be greatly improved by using a specific polyester polyol together with a perchlorate salt (e.g. 0.3% sodium perchlorate on the total composition). The polyester polyol is based on a diacid (e.g. adipic acid) and a mixture of diols one of which contains alkyl side groups (e.g. a mixture of butanediol and neopentylglycol).
The invention is actually a combination of two known ‘tricks’:  the neopentyl glycol will introduce some hydrophobicity and steric hindrance into the polyester backbone, and the perchlorate may have a weak coordination with the hydrolysable ester bonds thus forming a steric protection layer (at least according to Bayer’s own WO2013/030147). Because both effects are known and published I doubt that this is patentable.

Neopentylglycol

Neopentylglycol

Polyurethane Dispersions with “Reversible Drying”

Title: RADIATION CURABLE AQUEOUS COMPOSITIONS WITH REVERSIBLE DRYING

 Number/Link: WO2014/111349

Applicant/Assignee: Allnex

Publication date: 24-07-2014

Gist”: PUDs from hydrophilic, low molecular weight PU can be re-dispersed after drying.

Why it is interesting: It is known that PUDs will coalesce into an insoluble film when dried, at least when the temperature is over the ‘minimum film forming temperature’ or MMFT.  This behaviour, while being useful in most coating- and adhesives applications, can be problematic when the PUDs are used for jet-printing inks because of irreverisble blocking of the print-head nozzles.  According to this invention re-dispersible PUDs can be made when the PU used is both sufficiently hydrophilic and of a low average molecular weight (pref. an Mn between 1000 and 5000, with a polydispersity between 2 and 4). The PU does need to be radiation curable so it can be crosslinked after drying.  In the examples a low NCO prepolymer is prepared from 1,6-hexanediisocyanate (HDI), 2,2-dimethylolpropionic acid, some polyester or polycarbonate polyol and an acrylic chainstopper like a propoxylated trimethylolpropane diacrylate. The (viscous) prepolymer is dispersed and neutralized by adding water containing NaOH or triethylamine. After drying the PUDs of the invention can be re-dispersed in water at 25°C.

Film-forming PU dispersion.

Film-forming PU dispersion.

  • Pages

  • Categories

  • Enter your email address to follow this blog and receive notifications of new posts by email.

    Join 259 other subscribers
  • Follow Innovation in PU on Twitter