Spray Foam with Increased Reactivity

Patent Title: POLYOL PREMIX COMPOSITION FOR RIGID POLYURETHANE FOAMS

 Number/Link: WO2016/162362

Applicant/Assignee: Covestro

Publication date: 13-10-2016

Gist”: Addition of dicarboxilic acid reduces cream time in amine catalyzed foams

Why it is interesting: A short cream time has advantages for rigid PU spray foam because it can reduce dripping of the material after application.  According to this invention the cream time of an amine-catalyzed, HFC-blown spray foam composition can -surprisingly-be reduced by addition of a dicarboxilic acid, preferably succinic or glutaric acid. The diacids are used in a ratio of about 2 equivalents acid to 1 equivalent of (free) amine. In the examples a clear reduction of cream time is shown compared to compositions with no diacid, a mono-acid or less than the required amount of diacid. However, all examples also contain some trimerization catalyst (2-hydroxypropyl trimethylammonium formate) next to the tert-amine catalyst (N,N-dimethylcyclohexylamine). It would be interesting to see an example without the trimerization catalyst i.m.o.

Succinic acid.

Succinic acid

 

Advertisement

Formic Acid Blown EPIC Foams

Patent Title: ISOCYANATE-BASED TEMPERATURE-RESISTANT FOAMS WITH HIGH FLAME RESISTANCE

 Number/Link: WO2016/131874

Applicant/Assignee: BASF, Covestro

Publication date: 25-08-2016

Gist”:  One shot rigid isocyanate-epoxy foams blown with formic acid

Why it is interesting: This is the first in a series of (at least) 3 patent applications apparently resulting from a cooperation between BASF and Covestro on epoxy-isocyanate (“EPIC”) foams.  The other applications are WO2016/131878 and WO2016/131880 published on the same date. More publications may follow.
The current invention is about temperature-resistant foams with reportedly very high mechanical properties prepared form a one-shot system comprising a (pref.) high functional MDI, a (pref.) bisphenol-A or bisphenol-F polyglycidylether, at least one reactive amine catalyst and a blowing agent comprising formic acid. The ratio of iso to epoxy groups is (pref.) 3:1 to 15:1. The resulting materials are post-cured at 200°C. The foams contain no, or very little, urethane or urea groups and are said to be especially useful in laminates a.o.  In the examples foams with densities of 25-35 kg/m³ with a thermal conductivity as low as 20 mW/mK are shown.

Bisphenol-F diglycidylether

Bisphenol-F diglycidylether

Optical Polyurethane Elastomers

Patent Title: COMPOSITION FOR TRANSPARENT SHAPED BODIES BASED ON POLYURETHANE

 Number/Link: WO2016/113295

Applicant/Assignee: Covestro

Publication date: 21-07-2016

Gist”: Use of amino-chelate-tin complex as delayed action catalyst for transparent PU elastomers

Why it is interesting: Lenses for eyeglasses are increasingly made from transparent organic polymers like polyurethane elastomers. The production requires a specialized casting process into glass moulds, followed by an exact tempering over many hours. According to this invention polyurethane elastomers, useful for the production of eyeglass lenses, can be made form a composition containing a polyol, a cycloaliphatic or araliphatic diisocyanate, an internal mould release agent and a thermo-latent catalyst. The catalyst is an inorganic metal complex comprising Sn (preferred) and at least one tert-amine containing chelating ligand. The composition is said to have a longer ‘open-time’ as the catalyst-free system.

Example of thermo-latent catalyst according to the invention

Example of thermo-latent catalyst according to the invention

  • Pages

  • Categories

  • Enter your email address to follow this blog and receive notifications of new posts by email.

    Join 1,089 other subscribers
  • Follow Innovation in PU on Twitter

%d bloggers like this: