Classic PU Patent of the Month: ICI on Non-Isocyanate Polyurethanes (1961)

Title: Polyurethanes

 Number/Link: GB944310

Applicant/Assignee: Imperial Chemical Industries

Publication date: 11-12-1963

Gist”: Non-isocyanate polyurethanes by transurethanization of bis-carbamates and polyols.

Why it is interesting: Because of the growing concern over isocyanate toxicity and related changes in legislation, research and development of non-isocyanate polyurethane (NIPU) systems has increased sharply over the last few years. The idea, and most of the chemistry of NIPU is by no means new. In this patent, filed by ICI in 1961, NIPU is prepared by transesterification of bis-carbamates and polyols with a functionality of 2 or more. The materials are said to be especially useful for coatings and as TPU for fiber production. According to the patent, the advantages of this reaction system over the use of isocyanates are the reduction of the toxicity hazard, less moisture sensitivity and no need to carefully control reaction conditions and reactant proportions.  In an example N,N’-methylene-bis-urethane was reacted with 1,4-butanediol catalyzed by DBTDL resulting in a TPU which could be melt-drawn into fibers.  (Note that, in this case, ‘urethane’ is the common name for ethylcarbamate).

ICI logo anno 1961.

ICI logo anno 1961

Classic PU Patent of the Month: The First SMPUs (1988)

Title: Shape memory polymer foam.  – and – Shape memory polyurethane elastomer molded article.

 Number/Link: EP0361418 and EP0361419

Applicant/Assignee: Mitsubishi Heavy Industries

Publication date: 27-09-1989

Gist”: The first shape memory polyurethane foams and elastomers

Why it is interesting: Shape memory polymers are so-called “smart materials” that remain in a deformed shape until a trigger (usually an increase in temperature) makes them return to their original  (“memorized”) shape. In the 1980s these materials were more of a curiosity, only used in some niche applications such as heat shrinkable tubing. Currently however a lot of academic and industrial research is done on these materials, mostly driven by medical applications (e.g. stents, orthopedic casts, self-tightening sutures etc). And not surprisingly a lot of current SMPs are based on polyurethanes (SMPUs).  Interest in shape memory materials was stimulated significantly by the invention of the first SMPUs by Mitsubishi H.I. Ltd. They filed two patents covering both shape memory foams and elastomers. The first SMPUs were based on a di-isocyanate like 4,4′-MDI, a diol like PPG700 and a chain extender like bisphenol-A, and were formulated over a range of Tg’s. The foamed materials were blown with a physical blowing agent (i.e. not water) so that all materials can be considered thermoplastics.

SMP transition from temporary shape (spiral) to permanent shape (rod).  (Angew. Chem. Int. Ed. 2002, 41, 2034 ± 2057)

SMP transition from temporary shape (spiral) to permanent shape (rod). (Angew. Chem. Int. Ed. 2002, 41, 2034 ± 2057)

Classic PU Patent of the Month: Upjohn’s “Isoplast®” (1981)

Title: Polyurethane prepared by reaction of an organic polyisocyanate, a chain extender and an isocyanate-reactive material of m.w. 500-20,000 characterized by the use of only 2-25 percent by weight of the latter material

 Number/Link: US4376834

Applicant/Assignee: Upjohn

Publication date: 15-03-1983

Gist”: Very high hardblock TPU from MDI and chain extenders.

Why it is interesting: “Isoplast” is a so-called engineering thermoplastic useful in niche applications where high impact strength and high chemical resistance are required. The material can be clear or reinforced and can also be used in fiber-reinforced composites.  Currently the trademark is owned by Lubrizol who acquired it from Dow who in turn bought it from Upjohn in the 1980s.  Isoplast is made from 4,4′ MDI and a mixture of chain extenders selected from MEG,DEG, neopentyl glycol, 1,4-cyclohexanedimethanol etc. The choice of chain extenders controls the crystallinity/glassiness of the polymer.  A few percent of high mole weight polyol may be added to improve impact resistance. A very interesting material with interesting melt-flow characteristics because of its depolymerization and repolymerization behaviour during processing.

Screw from reinforced Isoplast

Screw from reinforced Isoplast

  • Pages

  • Categories

  • Enter your email address to follow this blog and receive notifications of new posts by email.

    Join 259 other subscribers
  • Follow Innovation in PU on Twitter