Crystalline High-Hardblock TPU

Title: CRYSTALLINE HIGH MODULUS THERMOPLASTIC POLYURETHANE

Number/LinkWO2017079101  WO2017079188

Applicant/Assignee: Lubrizol

Publication Date: 11 May 2017

“Gist”: High-hardblock TPU using ‘stacking’ chain extenders and MDI

Why it is interesting: Thermoplastic polyurethanes with hardblock levels of 75% and higher were first patented by Upjohn in 1981 in a “classic” patent which has been discussed before in this blog. These materials – often marketed under the ‘ISOPLAST’ tradename- are usually produced from a diol, 4,4′-MDI and a (mixture of) chain extender(s) comprising a ‘non-stacking’ chain extender like cyclohexanedimethylol, neopentylglycol, MPdiol etc. to control crystallinity. In the current invention only ‘stacking’ chain extenders are used in an otherwise identical composition, resulting -unsurprisingly- in a more crystalline material with a higher modulus and melting temperature. It is also said that these materials are easier to compound with e.g. fire retardants.
Even if this idea were formally ‘new’ I doubt its inventiveness and therefore its patentability.

The famous ISOPLAST(TM) nail

Thermoplastic Polyurea Elastomers

Title: MELT PROCESSIBLE POLYUREAS AND POLYUREA-URETHANES, METHOD FOR THE PRODUCTION THEREOF AND PRODUCTS MADE THEREFROM

 Number/Link: US2013/0331538

Applicant/Assignee: University of Akron

Publication date: 12-12-2013 (priority PCT)

Gist”: Polyurea is made melt-processable by incorporating hydrogen-bond accepting chain extenders (HACE)

Why it is interesting: It is well known that polyurea elastomers with a decent hardblock content (of e.g. 30-35%) are not melt-processable. Because of very strong (bi-dentate) H-bond formation in the hard domains the material will degrade sooner than flow when heated. In this invention it is proposed to incorporate a relatively small amount of HACE to disrupt the hard domain structure and reduce flow temperature.  In an example a few parts of OH-ended pentamethylenepolycarbonate with a MW of 500 to 800 was used next to the conventional 1,6-hexamethylene chain extender to drop the flow temperature by 50°C while not affecting the tensile strength. (I suppose a NH2-ended polycarbonate could have been used as well to make an all-polyurea material).

Bi-dentate H-bonds between polurea molecules (left) disrupted by a polycarbonate group (right)

Bi-dentate H-bonds between polurea molecules (left) dusrupted by a carbonate group (right)

  • Pages

  • Categories

  • Enter your email address to follow this blog and receive notifications of new posts by email.

    Join 259 other subscribers
  • Follow Innovation in PU on Twitter